
Document Number: 631900

Intel® Converged Security and
Management Engine (Intel® CSME)
Security
Technical White Paper

October 2022

Revision: 1.5

Contributors:
• Gehler, Rivka – Customer Security Engineer
• Hasarfaty, Shai – Principal Offensive Security Research

Engineer
• Moyal, Yanai – Principal Engineer
• Siam, Yazan – Customer Security Solution Architect

2 631900

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer
or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or visit www.intel.com/design/literature.htm.

Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2022 Intel Corporation. All rights reserved.

631900 3

Contents
1 Introduction .. 7

2 What is Intel® CSME?.. 8
2.1.1 Silicon Initialization .. 8
2.1.2 Manageability .. 9
2.1.3 Security .. 9

3 Overview and Capabilities ... 11

4 Firmware Throughout Platform Boot (By Component) .. 13
4.1.1 CSME ROM .. 14
4.1.2 ROM Boot Extension (RBE) .. 17
4.1.3 Secure Boot Flow ... 17
4.1.4 CSME OS Main Security Principles ... 19
4.1.5 Micro-Kernel (uKernel) .. 20
4.1.6 TCB, Operating System ... 20
4.1.7 BringUp (BUP) ... 21
4.1.8 Operating-System Drivers and Services 21
4.1.9 Applications ... 22

5 Recoverability Aspects .. 24
5.1 Firmware Update and CSME Firmware Version Control (Intel® FVC) 24
5.2 Intel® Enhanced Privacy ID (Intel® EPID) and On-Die, Certificate Authority

(ODCA) .. 25
5.3 TCB Recovery and Intel Capability-Licensing Service 26

6 Security Assets .. 28
6.1 End-of-Manufacturing (EoM) Mandatory Step ... 29

7 Security Process Improvements, Design Enhancement and Hardening 30

8 Anti-exploitation Techniques .. 32
8.1 Stack-Protector XORed with Return Address .. 32
8.2 SW-Forward Edge-Control-Flow Integrity (F-CFI) 32
8.3 XORed-Function Pointers’ Control-Flow Integrity (XF-CFI) 32
8.4 Data-Address-Space-Layout Randomization (DASLR) 33
8.5 Write Protect .. 33
8.6 Intel® Control-Flow Enforcement Technology (CET) 33
8.7 Remote Interfaces Full Address Space Layout Randomization (ASLR) 33
8.8 Data Fortify .. 33

9 Additional Security Improvements .. 35
9.1 BUP Deprivilege and Enhanced-RBE-Security Architecture 35
9.2 Firmware Measurements – Enhanced, Measured Boot 35
9.3 AMT-related Enhancements .. 36
9.4 Physical Fault-Injection Detection .. 36

10 Security-Validation Technologies .. 37

11 Conclusion .. 38

12 Appendix .. 39

4 631900

13 References .. 41

Figures

Figure 1. Intel® CSME in the System .. 8
Figure 2. Hardware Architecture Conceptual Diagram .. 12
Figure 3. Intel® CSME Firmware Components ... 13
Figure 4. Keys Derivation Conceptual Key ... 15
Figure 5. First Boot Using New Intel® CSME Firmware ... 18
Figure 6. Subsequent Boots of Intel® CSME Firmware ... 19
Figure 7. Services and Drivers- Example ... 22
Figure 8. Application Examples (Outlined in Red) .. 23
Figure 9. TCB Recovery with iCLS Connection .. 27

Tables

Table 1. Intel® CSME Ring3 Component Access Control and Permissions 21
Table 2. Differences of Intel® CSME Features Cross Generation .. 39

631900 5

Revision History

Document Number Revision Number Description Revision Date

631900 0.5 • Initial release September
2020

1.0 • Changed Chassis Title to Silicon
Initialization Section

• Updated the Security Section

• Updated Overview and Capabilities
Section

• Updated Throughput Firmware
Throughout Platform Boot (By
Component) Section

• Updated Table and other details in
The Fuse-Encryption Hardware Key,
the Chipset Key and its derivatives
Section

• Updated Secure Boot Flow Section

• Updated CSME OS Main Security
Principles Section

• Updated TCB Operating System
Section

• Updated Firmware Update and Anti-
rollback (ARB) Section

• Updated End-of-Manufacturing (EoM)
Mandatory Step Section

• Updated Security Process
Improvements, Design Enhancement
and Hardening Section

November
2020

1.5 • Updated the whitepaper to include
the design and implementation of
Intel® CSME 16.0 (Alder Lake)

• Updated Silicon Initialization Section

• Updated The Fuse-Encryption
Hardware Key, the Chipset Key and
its derivatives Section

• Updated the ROM Boot Extension
(RBE) Section

October 2022

6 631900

Document Number Revision Number Description Revision Date

• Updated the Firmware Update and
CSME Firmware Version Control
Section.

• Added Remote Interfaces Full Address
Space Layout randomization Section

• Added Data Fortify Section

• Updated AMT- Related Enhancements
Section

• Added Physical Fault-Injection
Detection Section

• Added Table 2. Differences of Intel®

CSME Features Cross Generation
summarizing the Intel® CSME
features cross-generation

§§

Introduction

631900 7

1 Introduction
Intel platforms are designed with a strong built-in security foundation. This allows the
ecosystem partners to help protect the platform data and to build more trusted
applications.

The Intel® Converged Security and Management Engine (Intel® CSME) was developed
as a hardware-based manageability and security controller isolated from the CPU
(Central Processing Unit). Intel® CSME is the system’s root of trust for Intel
components (and optionally for an Original-Equipment Manufacturer (OEM) if it
decides to use it).

The purpose of this white paper is to describe the security design and implementation
of Intel® CSME 14.0 (Comet Lake), Intel® CSME 15.0 (Tiger Lake) and Intel® CSME
16.0 (Alder Lake) and its role in the platform.

§§

What is Intel® CSME?

8 631900

2 What is Intel® CSME?
Intel® CSME is an embedded subsystem and a PCIe (Peripheral Component
Interconnect Express) device that is designed to act as the security and manageability
controller in the PCH (Platform Controller Hub). Intel® CSME aims to implement a
computing environment isolated from the main, CPU-executing, host software (SW)
like BIOS (Basic Input Output System), OS (Operating System) and applications.

Intel® CSME can access a limited number of interfaces, such as GPIO (General-
Purpose Input/Output) and LAN/Wireless LAN (WLAN), in order to perform its intended
operations. As designed, Intel® CSME’s firmware and configuration files are stored in
NVRAM (Non-Volatile, Random-Access Memory), such as flash memory on the SPI
(Serial-Peripheral-Interface) bus.

The following figure shows Intel® CSME’s position in the system:

Figure 1. Intel® CSME in the System

Intel® CSME is present on most Intel platforms, including client consumer and
commercial systems, workstations, servers, and IoT (Internet of Things) products.

For hardware (HW)-based security, users such as content providers or IT (Information
Technology) organizations can manage, for example, DRM (Digital-Right Management)
and Intel® Active Management Technology (Intel® AMT), which requires hardware-
level security to be available when the host is not responding or is powered down.

Intel® CSME is designed to serve three main platform functions:

2.1.1 Silicon Initialization

Intel® CSME role is essential in the platform silicon initialization and platform boot. It
is responsible for:

• Base initialization of PCH, including configuration of clocks and GPIO

• Authentication and loading of FW into HW engines (aka IPs) integrated within
the main CPU and PCH, e.g., Power-Management Controller (PMC), Audio,
Camera, Type C, and Sensor FW

• Secure debug of the PCH

What is Intel® CSME?

631900 9

2.1.2 Manageability

As part of the Intel® vPro® platform, Intel® AMT enhances the ability of IT
organizations to manage enterprise-computing facilities by providing remote-
management capability that is independent of the OS. Remote platform-management
consoles are designed to access Intel® AMT securely, even when the platform is
powered off, as long as the platform is connected to power and to a network.

Intel-based platforms with enabled Intel® AMT include the following capabilities:

• SOL (Serial Over Local-Area Network) is the capability of having a console-
redirection feature

• USB-R (Universal Serial Bus Redirect) is a storage redirection feature that can
be executed remotely

• KVM (Keyboard, Video and Mouse) enables the remote control over network

• Remote power control

• Alarm Clock includes scheduled wake ups for proactive maintenance

• Robust asset management enabling hardware-asset discovery and hardware
information and location.

• Out-of-Band management, which includes:
OS-independent diagnostics
Non-volatile storage
Event management
Remote-control capabilities
System-Defense capability
Agent-Presence capabilities
Out-of-band connectivity to an Intel AMT-based platform located outside an
enterprise intranet when using Intel® Endpoint Management Assistant and the
CIRA (Client Initiated Remote Access) AMT feature.

2.1.3 Security

In recent years, security has increasingly become the focus of the engine. With the
engine supporting both manageability and security, Intel® CSME’s design has added
several, additional functions:

• Intel® Platform Trust Technology (Intel® PTT) is an integrated TPM (Trusted-
Platform Module) compliant with the TCG TPM 2.0 standard. It enables support
of UEFI (Unified Extensible Firmware Interface) secure boot, disk encryption,
secure storage, virtual smart card, remote-attestation-use cases, and all
Microsoft* requirements for integrated TPM if latest Windows* 10 OS version
(19H1/H2) is installed.

• Intel® Boot Guard is a feature that aids boot-execution integrity through a
chain of trust. Each module is designed to authenticate and load the next
module in the boot sequence, starting from the platform root of trust. Intel®
CSME enables storing the Intel® Boot Guard policy in PCH Field-Programmable
Fuses (FPF), so that the user can be more confident that the system is running
an authentic, OEM BIOS.

• Intel® CSME supports HW DRM that helps users enjoy premium services from
third-party providers, with control access to copyright material

What is Intel® CSME?

10 631900

• Intel® CSME enables secure loading and execution of Intel-signed DAL (Intel®
Dynamic Application Loader) applets and secure firmware loading of other
platform-firmware components, such as TBT (Thunderbolt™), Type-C, Sensor
Solution FW, etc.

Intel® CSME has the capability of helping safeguard the system and protecting digital
assets for users at the hardware level, which capabilities cannot be provided by
programs running on the host.

Since Intel® CSME plays a critical, security role in Intel platform, Intel is committed to
harden Intel® CSME and implement various defense-in-depth mechanisms to help
prevent abuse and attacks.

§§

Overview and Capabilities

631900 11

3 Overview and Capabilities
From a hardware perspective, Intel® CSME is composed of a converged-
manageability-hardware extension and a converged-security engine. The
manageability engine contains hardware blocks connected via internal fabric that
facilitate Intel® AMT and debugging functionalities. The security-block design consists
of the following subsystems:

• Dedicated CPU, a 32 bits processor based on Intel 486 architecture,
supporting privilege execution levels, aka rings, segmentation, MMU (Memory
Management Unit) for page management and also CET (Control Enforcement
Technology) starting Tiger Lake platform.

Note: Any reference to ring in the rest of this document refers to the CSME CPU rings and
not the Main CPU rings.

• Dedicated, internal SRAM (Static Random-Access Memory) isolated from host
and that cannot be probed via the chipset’s external interfaces. The size of the
SRAM ranges from 512KB to 1,920KB, depending on the Intel® CSME SKU.
The amount of SRAM required on a SKU depends on the set of applications
that the SKU supports.

• ROM (Read-Only Memory) is the HW root of trust of Intel® CSME firmware

• System Agent allows the CSME CPU to securely access SRAM and helps
enforce access control to SRAM from internal/external devices (example, DMA
access) by using a dedicated IOMMU (Input Output Memory Management
Unit).

• OCS (Offload and Cryptography Subsystem) is a Cryptography-HW accelerator
with DMA (Direct-Memory-Access) engine and Secure-Key-Storage (SKS)
Hardware. The SKS Hardware aims to protect keys from potential leakage
from CSME SRAM, while CSME Firmware runs. It helps to ensure that CSME
Firmware can use keys without knowing their actual, plaintext values. The
SKS HW contains several, SKS slots where a key can be stored. The key size
could be 128 bits, 256 bits, or even 384 bits in TGL (Tiger Lake) platform with
TGP (Tiger-P) PCH. Each SKS slot is designed with its own set of attributes

• Secure Mode: Result of AES-CBC decryption (used for unwrapping key
previously wrapped by an SKS key, i.e., the Wrapping Key) and HMAC (used
for generating new key) can be stored in SKS only

• Privilege Level: Used for hardware-access control on the SKS slot. The key
in this slot should be accessible if the SKS-slot-privilege level is greater or
equal to the SKS-privilege level of the OCS.

• Locked: The key in this slot can be invalidated or replaced after Intel® CSME
hardware reset.

• Gasket is an interface to PCH fabric and CSME-IO (Input/Output) devices like
TPM and HECI (Host-Embedded, Communication Interface), which represents the
communication protocol between Intel® CSME and the host.

• Manageability Devices used to help manageability and redirection (USB-R, KT,
KVM, etc.)

Overview and Capabilities

12 631900

• Protected, Real-Time Clock (PRTC) used for monotonic counters (anti-replay
protection) and protected time.

Figure 2. Hardware Architecture Conceptual Diagram

Intel® CSME’s design also uses other PCH hardware blocks (aka IP) such as:

• The Intel® DRNG (Digital, Random-Number Generator), which is designed to
generate non-deterministic, random numbers and complies with NIST SP800-
90A, B, and C.

• The fuse controller, which helps manage two types of fuses: Intel® PCH
Manufacturing fuses and FPFs.
Intel PCH Manufacturing fuses, set by Intel manufacturing before shipment to
OEM/ODM manufacturers, are used to set CSME configurations (i.e.,
enablement of specific, Intel® CSME, signing keys, production silicon) and
contain CSME-security keys that are unique per chip and encrypted using
CSME-HW key (refer to The Fuse-Encryption Hardware Key, the Chipset Key
and its derivatives section for details on CSME HW Key)
FPFs are set by OEM/ODM manufacturers before shipment to end-users and
contain the manufacturers’ secure settings, such as public key and Intel Boot
Guard policy. They also contain the CSME FW Anti-Rollback Security-Version
Number (refer to the Firmware Update and CSME Firmware Version Control
(Intel® FVC) section for details on ARB)

• The DFX (Design for Testability, Debug, Security, and Validation) that helps
control CSME and other, PCH micro-controllers debug interface such as JTAG.
The DFX IP is also used to indicate the debug policy to other IPs within the
PCH / SoC, such as CSME and fuses. Once the DFX policy is changed, the
intention is that IPs are notified and will scrub any secrets that might be
present inside the IP before the IPs open their debug interface.

§§

Firmware Throughout Platform Boot (By Component)

631900 13

4 Firmware Throughout Platform
Boot (By Component)
Intel® CSME uses a typical, embedded-system architecture consisting of a boot ROM
and updatable firmware. The boot ROM is permanent hardware with no patching
mechanism. By design, the firmware, in its compressed form, is stored in NVM as part
of the system firmware, which includes BIOS, micro-code patch, ACM (Authentication-
Code Module) and others. The Intel® CSME firmware utilizes Huffman and LZMA
compression to help reduce its footprint in Non-Volatile Memory (NVM).

During system boot, the boot ROM is designed to invoke DMA to load the Intel® CSME
binary image into internal SRAM and verify the image. The dictionary of Huffman
compression is built into the SPI and decompression is conducted by the SPI
controller. In contrast, as intended, the LZMA decompression is performed in firmware
by the CSME process-manager module, wherein the firmware image is digitally signed
by Intel with standard, RSASSA-PSS (RSA-Signature Scheme with Appendix –
Probabilistic-Signature Scheme) with a 3072-bit, RSA key and SHA-2-384 (Secure-
Hash Algorithm) in Intel® CSME 15.0 and RSASSA-PKCS1-v1.5 (RSASSA Public-Key-
Cryptography Standards) with a 2048-bit, RSA key and SHA-2-256 in Intel® CSME
14.0. The goal is that the public key itself and the signature are part of the firmware
manifest, while the hash of the public key is hardcoded in the boot ROM. There is also
a signing-key mask designed into the Intel-HVM (High-Volume-Manufacturing) Fuses
to help indicate to the CSME ROM which signing key is active. The associated private
signing keys are kept in an HSM (Hardware Security Module) within an Intel secured
facility and are refreshed every new major generation, therefore Intel® CSME 14.0
and Intel® CSME 15.0 have different signing keys.

This section describes Intel® CSME’s components and the intended action of each
component during platform boot.

Figure 3. Intel® CSME Firmware Components

Firmware Throughout Platform Boot (By
Component)

14 631900

4.1.1 CSME ROM

The Intel® CSME ROM is integrally part of CSME HW in PCH and does not have any
patching mechanism after silicon tape-in. Once an Intel HVM fuse is set during
manufacturing of the chip by Intel, there is no way to subsequently bypass the ROM
on production stepping.

The ROM has three, main goals:

• Initializing the CSME HW and enabling the Intel® CSME CPU to work in
protected mode with paging and segmentation.

• Generating the Intel® CSME firmware keys by using the chipset key, and RBE
(ROM-boot-extensions) Security-Version Number (SVN) from Firmware-
manifest header.

• Loading, authenticating, and executing the RBE and Intel Debug-Launch-
Module (IDLM), if present in SPI flash, by using the public-key hash embedded
in ROM code and an HVM fuse indicating which key is enabled.

4.1.1.1 The Fuse-Encryption Hardware Key, the Chipset Key and its
Derivatives

As designed, the CSME Chipset Key is the master of all keys generated by the CSME
ROM and by CSME Firmware at runtime. Main usages of those keys are to provide
cryptographic protection of CSME code/ data and support attestation-based services
needed by CSME applications like DRM, PTT and DAL.

All chipset keys are randomly generated by Intel’s Key Generator Facility (iKGF) for
Intel platforms, encrypted with a PCH family Hardware Key (the Fuse Encryption
Hardware Key), and sent to Intel Assembly facilities for final programming in the PCH
manufacturing fuses before shipment to OEM, system manufacturers.

The table below lists security fuses that can be programmed during Intel
Manufacturing:

Name Length in Bits Encrypted with Fuse
Encryption Hardware Key

Chipset Key 256 (CML) / 512 (TGL/ADL) Yes

EPID 2.0 Private Key 256 (removed in ADL) Yes

EPID 2.0 Group ID 32 (removed in ADL) No

PTT EK Counter 32 (removed in ADL) No

Debug Enabled Chipset Key 128 (CML) / 256 (TGL/ADL) No

Starting Intel® CSME 16.0, the EPID group ID, EPID keys and PTT EK Counter keys
were removed from fuses since those are not needed anymore with Intel On-Die-CA
architecture (refer to section 5.2 Intel® Enhanced Privacy ID (Intel® EPID) and On-
Die, Certificate Authority (ODCA) for more information)

The Fuse-Encryption, Hardware Key aims to prevent CSME-security keys from being
exposed, should they be successfully extracted from the silicon fuses.

Firmware Throughout Platform Boot (By Component)

631900 15

Note: The Fuse Encryption Hardware Key is not meant to protect chipset key and Intel®
Enhanced-Privacy ID (Intel® EPID) private key from the CSME ROM.

When the Intel® CSME ROM starts executing, it is designed to execute the following
sequence:
1. The ROM requests from the Cryptography-Hardware accelerator to generate the

Fuse-Encryption-Hardware Key.
2. The ROM sets the SKS-slot attributes (privilege level, secure mode, and lock) and

then loads the Fuse-Encryption-Hardware Key into the SKS Hardware.
3. The ROM pulls the security keys from the fuses into CSME SRAM and then locks

the security-key fuses.

Note: Once the fuses have been locked, it is not possible to retrieve the security keys until
the next Intel® CSME reset; this seeks to allow that only the Intel® CSME ROM can
retrieve the security keys.
4. The ROM decrypts the chipset key encrypted with the Hardware Key from Intel®

CSME SRAM into SKS.
5. The ROM can use the chipset key to derive additional keys using a Key Derivation

Function (KDF) based on NIST SP800-108 specification in counter mode (section
5.1 of the NIST specification) with HMAC-SHA2-384 or HMAC-SHA2-256 as the
Pseudo Random Function (PRF). The KDF message is unique per key and can
include the CSME Firmware Security Version Number (SVN) or the hash of the
CSME Manifest (this makes the key unique per FW version) after the CSME-
Firmware manifest has been verified by CSME ROM.

Figure 4. Keys Derivation Conceptual Key

The ROM can create several keys from the Chipset Key:
1. Intel Root Key –the master key for the Intel® CSME firmware. For example,

used to generate storage keys to help protect Intel® CSME data in NVM.
2. Wrapping Key –used to wrap a key in SRAM and help ensure that the key is

unwrapped into SKS so it can be used. Once a key has been wrapped, it is
designed to be bound to the Intel® CSME Hardware and not be used outside Intel®
CSME.

3. Memory Guard Key –used to wrap and unwrap a key in SRAM. This key is
typically used to protect attestation keys like Intel® EPID or Endorsement Key

Firmware Throughout Platform Boot (By
Component)

16 631900

(EK) that cannot be stored in SKS, which supports only Advanced-Encryption
Standard (AES) or Hash-Based, Message-Authentication-Code (HMAC) key types.

4. Suspend Key –used to generate one-time keys to help allow saving and restoring
the Intel® CSME Firmware context when Intel® CSME enters Power Gating or when
the platform goes into standby (on client systems only). This key can be critical to
Intel® CSME execution integrity upon resuming.

5. IVB (ICV Blob) Root Key –used to generate keys that help protect the ICV
(Integrity-Check Value)-Private Key (IPK) and the Intel® CSME firmware modules’
ICV in the ICV blob kept in IVBP partition. Those ICVs are calculated using IPK
over Intel® CSME firmware module’s 4KB pages in NVM and the Cryptography-
Hardware accelerator AES-P (Programmable, Advanced-Encryption, Standard
Engine). It is designed to allow fast boot of Intel® CSME Firmware and secure
page-in / page-out of Intel® CSME code and data from Intel® CSME SRAM to
SPI/DRAM (Dynamic, Random-Access Memory). By design, the IPK and ICV would
be invalidated by an Intel® CSME firmware update or by an ICV-integrity failure.
IVB Root Key, keys derived from it and IPK are crucial to Intel® CSME execution
integrity during boot and runtime.

6. Provisioning Key –used by the Intel® CSME firmware in CML (Comet Lake) to
help retrieve a new, Intel® EPID key from the Intel server when TCB (Trusted-
Computing Base) Recovery is required in the event the Intel® CSME EPID-
attestation key has been compromised. The Provisioning Key is based on the
Intel® CSME firmware SVN. Using this key is relevant when the SVN is greater
than 1.

7. Intel PTT EK Root Key –by design, exported by the Intel® CSME ROM, encrypted
with the Memory-Guard key, and used by Intel® PTT in CML to generate its EK by
using the PTT EK counters that are also exported by CSME ROM to Intel® PTT.

8. Intel On-Die-CA (Certificate Authority) FW private ECC (Elliptic-Curve-
Cryptographic) key – used by the Intel® CSME firmware (Crypto Driver) in TGL to
issue unique keys and x509v3 certificates to CSME applications (example, PAVP,
AMT, DAL) to help prove their identity to a remote server.

Note: In TGL platform, the On-Die-CA keys replace EPID key.

Once the Intel® CSME ROM has finished generating all the keys, it is designed to zero
the chipset key and the fuse encryption key (and lock them) before executing the
Intel® CSME firmware. This is done to help ensure that these keys cannot be accessed
and used from outside the Intel® CSME ROM.

Starting ADL, CSME FW key based on FW SVN are generated by CSME ROM using an
iterative KDF (aka PRF loop) while the number of iterations depends on the maximum
CSME SVN value supported and the current SVN value present in the CSME FW
manifest, i.e., 65 minus the current SVN from CSME FW manifest, where the
maximum current SVN value in ADL is 64 and minimum value is 1. This allows the
Intel® CSME FW to generate the previous SVN based keys on its own, example, from a
key derived when the SVN equals 3, the keys derived when SVN equals 2 and when
the SVN equals 1 can be generated. The diagram hereafter illustrates the iterative
KDF concept.

Firmware Throughout Platform Boot (By Component)

631900 17

Another security hardening made in ADL is to have the ROM put the FW root keys in
SKS with the secure mode attribute. This ensures that keys generated by CSME FW
using those root keys, example, FW storage keys are never exposed to the firmware.

4.1.2 ROM Boot Extension (RBE)

The Intel® CSME RBE extends ROM functionality in firmware. The RBE is designed to
be updated in the field and address initializing and configuring the Intel® CSME for the
boot. The RBE can be viewed as a bootloader for the Intel® CSME operating system.
The RBE has three, main goals:

• Perform hardware-based, Firmware Version Control (Intel® FVC) check on the
Intel® CSME firmware. This applies to all platforms up to and including Intel®
CSME 14.0. From Intel® CSME 15.0, the ROM is designed to perform this
check.

• Perform early silicon enabling, like:
- authentication of debug token using Intel or OEM signing key and

checking that the token matches the PCH ID. Once token verification
is done, RBE would remove the CSME permission to further modify
DFx policy in DFx aggregator.

- secure loading of PMC FW and data. Intel® CSME assists the main CPU
boot by applying a PMC-firmware patch before the main CPU comes
out of reset as a system cannot boot without a proper, PMC patch.

• Load, authenticate, and execute the Intel® CSME, core, operating system.

4.1.3 Secure Boot Flow

As explained in previous section, the CSME boot process is designed to always start in
ROM and continue in RBE; the intention is this chain of trust is extended by the CSME
kernel and process manager, which help load and authenticate the rest of the
firmware from external memory (SPI flash) as shown in Figure 5. First Boot Using New
Intel® CSME Firmware below.

The CSME RBE and FW kernel create ICVs for every page of the CSME-FW module
(drivers, services, or application) loaded and authenticated by process manager. The
Intel® CSME-page size is 4KB.

The BringUp process can expose HECI commands for BIOS to tell CSME that the
system memory has been initialized and can be used by CSME to configure the IMRs
(Isolated Memory Region). One of these IMRs is used by CSME for its page

Firmware Throughout Platform Boot (By
Component)

18 631900

replacement mechanism that is needed because the entire CSME FW cannot fit into its
SRAM. Therefore, Intel® CSME is designed to utilize this isolated region in the
system’s DRAM to securely evict CSME code and data from CSME SRAM. The isolated
memory is also referred to as Unified-Memory Access or UMA and can be found in
dedicated IMR for platform with IMR-based CPU.

On a non-IMR-based CPU, such as CML, the BringUp process is designed to ask the
BIOS during boot to allocate between 8MB and 32MB of UMA exclusively for Intel®
CSME to use. The exact amount of UMA depends on the Intel® CSME SKU.

On an IMR-based CPU, such as TGL or ADL, the aim is for BIOS to allocate stolen
memory based on IMR total size reported by CSME during the early handshake with
BIOS. CSME helps configure IMR and is designed to remove the CSME’s own write
permissions to IMR settings to help prevent CSME from further changing IMR, base
addresses and limits.

Figure 5. First Boot Using New Intel® CSME Firmware

Once all CSME modules have been loaded, Process Manager enables storage of all
CSME modules’ ICVs and IPK in ICV Blob Partition (IVBP) as encrypted and integrity-
and replay-protected in SPI flash. At next boot of CSME OS, the applications can be
loaded and authenticated using those ICVs as shown in the figure below.

Firmware Throughout Platform Boot (By Component)

631900 19

Figure 6. Subsequent Boots of Intel® CSME Firmware

Note: Before DRAM is initialized by BIOS, CSME-FW-code-pages replacement is designed to
be done by kernel from SPI flash using ICVs. Once DRAM is initialized, CSME kernel
can make use of DRAM to evict both code and data pages. However, since BIOS is
outside TCB for CSME paging to DRAM, as conceived, this memory is considered
untrusted from CSME standpoint. Therefore, CSME code and data pages evicted to
UMA are designed to be encrypted, anti-replay-protected, integrity- and
confidentiality-protected cryptographically with keys known to CSME only, i.e., IPK for
calculating ICVs and UMA key (a randomly generated key per boot) for encrypting
evicted pages. When pages are copied back from DRAM to CSME SRAM, by design,
pages are decrypted, and integrity checked. Some pages are locked in SRAM and not
paged out to UMA. These can include pages that contain critical, kernel code that
executes very frequently, critical data, including the AES and HMAC keys for UMA
protection, and the ICVs. As intended, page faults are handled by the firmware kernel,
and paging operations between SRAM and UMA are optimized by Intel® CSME’s DMA
engine and Cryptography-HW accelerator.

4.1.4 CSME OS Main Security Principles

CSME OS (Operating System) is based on Minix OS architecture and has two main
security principles: a Micro-Kernel-OS architecture and a minimal TCB.

By design, the micro-kernel is the only runtime component executing at Intel® CSME
ring0, while Intel® CSME Firmware applications, drivers and services all run at Intel®
CSME ring3. The micro-kernel implements the bare minimum required to implement
an OS.

The TCB is composed of minimum amount of processes and acts as a root of trust for
all security-hardening measures and security services. Its main roles are:

• Helping protect the access to keys and hardware (the Intel® CSME assets)

• Enabling Intel® CSME-firmware-code integrity at boot time and at runtime

http://www.minix3.org/

Firmware Throughout Platform Boot (By
Component)

20 631900

• Helping protect Intel® CSME modules from each other and their data stored in
SPI flash memory

• Enabling Intel® CSME modules to execute with minimum privileges.

4.1.5 Micro-Kernel (uKernel)

The Micro-Kernel enables the infrastructure for Intel® CSME, including threading,
memory management, and process isolation.

The Micro-Kernel has four, main goals:

• CPU’s driver: Micro-Kernel helps a) enforce that code execution is from SRAM
only, b) apply process isolation using CPU rings and x86 segments, c) set up
page attribute (i.e., Read, Write, and User bit) enforced by MMU, and d)
control HW access to ring3 via MMIO (Memory-Mapped, Input Output).

• IOMMU’s driver: it helps configure the IOMMU policies to allow/deny DMA
access to SRAM.

• Support standard-kernel service, such as Inter-Process Communication (IPC),
processes and threads management, and handling of interrupts and
exceptions.

• Aid page replacement between SRAM and DRAM/SPI flash to optimize SRAM
utilization. By design, the evicted pages to DRAM are encrypted and integrity
protected.

4.1.6 TCB, Operating System

Intel® CSME TCB Operating System is composed of various components whose main
security roles as designed are described below:

• Process Manager enables i) loading and authenticating of Intel® CSME drivers,
services, and applications, ii) process creation and termination, and iii), using
the Kernel Service, creation of x86 process running at ring3 CPU privileges for
driver, services, and applications.

• Crypto Driver implements FW-key management as well as Cryptographic and
DMA service.

• VFS (Virtual-File System) enables secure storage with data-migration support
and helps enforce a permission check on data files and special files exposed by
drivers and services inside CSME OS. VFS can offer a mechanism for
applications and common services to store non-volatile data in the data region
of the same NVRAM in which the Intel® CSME image is stored. The
mechanism is designed to provide encryption, integrity, and anti-replay
protection. The aim is for the storage key to be managed by a crypto driver
and protected using the SKS HW at runtime. This can eliminate potential,
key-leak vulnerabilities. AES-GCM with 256 bits key is used to help protect
files in NVM. Replay protection can be supported using either RPMC or PRTC.
The Intel® CSME processes enable deciding if encryption or/and anti-replay
protection are required for the blobs they own. Blob protection is designed to
include integrity. To help avoid flash wear-out, a general rule for Intel® CSME
firmware design is to try to minimize the number of writes to flash. The
storage manager supports implementing an algorithm to detect access

Firmware Throughout Platform Boot (By Component)

631900 21

patterns that would accelerate flash wear-out; the algorithm is designed to
then apply the relevant remediation.

• Bus Driver is intended to allow CSME drivers to configure their own device-
configuration space and help enforce access control as to which device can be
configured by which driver.

The following table shows the designated, access control and permissions for Intel®
CSME ring3 TCB components:

Table 1. Intel® CSME Ring3 Component Access Control and Permissions

Ring3 TCB
Component

Create
CSME

Process

Control Access to
CSME Keys

Control Access to
CSME OS Services

Control Access to
Hardware

Process
Manager

Yes No No No

Crypto Driver No Yes No No

VFS No No Yes No

Bus Driver No No No Minimal

4.1.7 BringUp (BUP)

The CSME BringUp (BUP) is a FW module that implements CSME functionality required
for supporting platform boot and configuration. BUP’s design includes Boot Guard, a
sub-set of Intel® PTT commands, and a minimal implementation of some Intel® CSME
FW drivers and services. The goal is for it to launch quickly, while the platform waits
for all the drivers, services, and applications to start executing.

Starting with Intel® CSME 12, the BringUp is intended to run with reduced privileges
(refer section on BUP Deprivilege and Enhanced RBE Security Architecture).Due to the
deprivilege, the aim is that BringUp cannot create any Intel® CSME processes or have
access to FW-root keys, attestation key, OCS, or DFX hardware.

4.1.8 Operating-System Drivers and Services

The Intel® CSME Operating-System drivers and services are designed to be executed
at Intel® CSME ring3, with the two main components as Maestro and Load Manager.
These components enable orchestrating the loading of all Intel® CSME ring3
processes, which are classified into three categories: Drivers, Services, and
Applications. As intended, access to drivers and services is overseen jointly by the VFS
and the Micro-Kernel that help enforce pre-defined, static permission for each CSME-
FW process.

Intel® CSME drivers are processes designed to abstract a hardware device, such as
the Cryptography-HW accelerator and DMA engine and expose APIs (Application-
Programming Interfaces) for other processes to consume. The drivers are also
designed to only have access to the specific hardware that they need to manage, with
such access via MMIO. Some drivers do not communicate directly with the external
world, while others, such as LAN, WLAN, and NVRAM driver, help transport data from
the external world to associated applications and services.

Firmware Throughout Platform Boot (By
Component)

22 631900

An example of a driver is HECI, which can provide a transport mechanism by which
the host and Intel® CSME can pass messages to one another through two, circular
buffers: one for messages sent from Intel® CSME to the host and the other for
messages in the opposite direction. The host and the Intel® CSME are both designed
to implement a HECI driver meant to act as a message dispatcher. On the host OS, by
design, the HECI driver is installed as a kernel-mode driver, also known as Intel® MEI
(Intel® Management Interface). On the Intel® CSME, the aim is for the HECI driver to
be an Intel® CSME Ring3 driver in CSME OS consumed by other processes. The HECI
interface does not provide any native, security measures. By design, clients of HECI
are responsible for implementing the applicable protocols to protect the transmitted
messages. Intel® CSME-firmware processes help expose HECI commands of various
functions for the host to invoke. On both the host and the Intel® CSME, various clients
can connect to the driver to send and receive messages to and from their
counterparts, respectively. For example, Intel® CSME’s PAVP (Protected-Audio-Video
Path)-application client helps implement HECI commands for the media-player,
software client on the host to provision device key-box, process content licenses,
retrieve playback statistics, and so on.

Figure 7. Services and Drivers- Example

4.1.9 Applications

Following BringUp and the loading of drivers and services, the Intel® CSME
applications are designed to run in Intel® CSME ring3. The CSME Micro-Kernel helps
enforce isolation of each Intel® CSME-application execution and prevent one CSME
application from accessing the memory space of another application. Application
secrets are also better protected in flash memory by VFS, which helps provide such
protection using a storage key designed to be protected in SKS and managed by
crypto.

Not all features are supported by all SKUs, and some features require specific
configuration and enablement. For example, Intel® AMT is not supported on
consumer SKUs, Intel® Atom platforms or servers. Intel® Boot Guard requires OEMs to
provision and enable the feature for usage. Some features can also be disabled by
OEMs.

Firmware Throughout Platform Boot (By Component)

631900 23

Figure 8. Application Examples (Outlined in Red)

§§

Recoverability Aspects

24 631900

5 Recoverability Aspects

The following section describes various designed recoverability aspects of CSME: from
simple firmware update to re-key-generation process in specific cases of security
breaches.

5.1 Firmware Update and CSME Firmware Version
Control (Intel® FVC)
Intel® CSME’s firmware can be updated in the field. Intel might release new firmware
for several reasons:

• Functional- or security-bug mitigations

• Performance improvements

• New, infrastructural features

• New, security hardening

• New applications

The new firmware is delivered to end users by individual OEMs – not by Intel. Users
are encouraged to download and install the latest version available for the device. An
Intel® CSME-firmware update is designed to be installed using a software agent via
the HECI interface.

The Firmware-Update process supports a fault-tolerant mechanism to help protect the
user from system bricking in the case of an interrupted update.

If the new firmware implements mitigations for security bugs, it might not be possible
to downgrade the firmware or roll back to old and vulnerable firmware due to
firmware or hardware mechanisms. The firmware-enforced, firmware version control
mechanism helps prevent downgrading via the firmware-update interface. This can
protect users from accidentally performing downgrades or prevent an attacker with
OS-admin privileges from performing a downgrade to an old FW with known
vulnerabilities.

The hardware-enforced, firmware version control mechanism is designed to provide an
OEM-managed capability. When enabled, it properly mitigates physical rollback of
CSME Firmware in SPI flash on the platform.

It helps the system remain protected against known vulnerabilities that have been
mitigated in the most recent, CSME-Firmware release. To achieve this, the new
firmware is designed to burn specific, FPFs to record the FW ARB (anti-rollback) SVN
into hardware. At a very early stage of the boot, the Intel® CSME’s boot ROM or RBE
(depending on the platform generation) helps examine these FPFs. As a remediation
mechanism, if the SVN of the firmware from flash is lower than the SVN from the
FPFs, then CSME can detect it is under rollback attack and prevent the system from
booting a vulnerable version. The Intel® CSME, hardware-enforced, anti-rollback
mechanism was first implemented in the Cannon Lake PCH (Intel® CSME 12.0).

Recoverability Aspects

631900 25

5.2 Intel® Enhanced Privacy ID (Intel® EPID) and On-
Die, Certificate Authority (ODCA)
The Intel® EPID scheme is an anonymous authentication algorithm invented by Intel
and standardized by the International Organization for Standardization (ISO). Intel®
EPID 1.0 was first introduced in Intel® CSME 5 in 2008. Intel® EPID 2.0, with
performance and security enhancements, intercepted Intel® CSME 12 in 2017 and is
supported up to Intel® CSME 14.0.

The Intel® EPID helps a member prove its membership to a verifier without disclosing
its identity. The ecosystem of Intel® EPID is designed with three actors:
1. Authority: generator and issuer of all member private keys and group public

keys.
2. Member: belongs to a group of many members. The member is provisioned with

its unique member private key and a group certificate that is shared by all
members of the same group. A member uses its private key to help generate an
Intel-EPID signature to show its membership to the verifier.

3. Verifier: designed to authenticate a member by checking the member’s signature
against the group certificate.

The fundamental advantage of Intel® EPID over traditional authentication methods
built on asymmetric cryptography is Intel® EPID’s enabling of anonymity. The
Authority can decide the number of members in a group. Every member owns its
unique, private key, but, by design, all members of the same group share the same,
group, public key and certificate. During authentication, the intention is that a
member signs the challenge from the verifier, and the verifier verifies the member’s
signature using the group certificate. The verifier helps confirm that the signature is
generated by one of the group members, but it is designed not to be able to identify
exactly which of the members generated the signature.
A member or a group of members may be revoked by the Authority in three ways:

• Group revocation: Revoke the entire group.

• Private-key revocation: The Authority maintains a list of values of
compromised, private keys. A verifier helps detect whether a received
signature was generated by a private key in the private-key-revocation list
and reject the member if it was.

• Signature revocation: Sometimes the private key of a compromised
member is not disclosed, but a signature from the member is known. The
Authority helps maintain a list of signatures from compromised members. A
verifier is designed to detect whether a received signature was generated by
the same member who generated a signature on the signature-revocation list;
if it was, the goal is for the Authority to reject the member.

The Intel® EPID is especially useful for applications that require privacy. On the Intel®
CSME, it is consumed by applications including PAVP, DRM, Intel DAL, and Intel®
PTT.

CSME 15.0 and forward replace Intel® EPID with an alternate architecture: the ODCA
(On-Die, Certificate Authority). Using its ODCA-private key, Intel® CSME ROM can act
as embedded, Certificate Authority and issue a certificate to the CSME FW and its
application. Examples of certificate usages are Boot Guard, DRM, PTT, and DAL. The
aim is for each application/usage to use its certificate to prove to the verifier it is a
genuine CSME application running inside the CSME subsystem. For example, Content

Recoverability Aspects

26 631900

Provider can be used for DRM, ACM for Boot Guard, and AMT authentication by the
management console. ODCA is also used to help generate the Endorsement Key for
PTT. A CSME-FW update may revoke the ODCA chain of certificates for its application.

5.3 TCB Recovery and Intel Capability-Licensing
Service
As conceived, TCB Recovery consists of:
1. Blob migration – enabled migration of all CSME data kept in NVM from the

previous, storage key to a new, storage key generated by ROM from a newer, FW
SVN.

2. Help acquisition of a new, Intel® EPID and a new, EK Certificate on the CML
platform where ODCA is not supported. On the TGL platform, ROM can issue a
new, ODCA-FW, private key and certificate based on incremented, FW SVN
without a need to connect to the Intel server over the internet.

Once TCB Recovery has successfully completed, by design, the platform will obtain a
new, Intel® EPID key, a new EK with its corresponding certificate, and data blobs
protected using a new, storage key. Starting with TGL and moving onward, the
intention is that a new, ODCA-FW, private key, and certificate will be generated.

In order to support TCB recovery on CML platform, impacted systems can be updated
to a new, Intel® CSME firmware that contains the relevant mitigation and has an
incremented SVN.

The impacted system also needs an iCLS (Intel Capability-Licensing Service) installed.
The iCLS is a software service delivered with the Intel®-ME-software package and that
is designed to run on client machines. The iCLS supports establishing a trusted
connection, that uses standard, Transport-Layer Security (TLS) over port 443, to
communicate with Intel-backend-licensing servers to obtain various licenses and keys.
If the end-user system is inside an intranet (e.g., inside an IT organization), he or she
might need to provide a proxy to allow iCLS to connect properly to the Intel-iCLS-
server backend over the internet.

The iCLS-local service requires an internet connection to connect to the iCLS server
and executes the Intel® EPID Re-Key in case of TCB recovery up to Intel® CSME 14.0.

The following is a description of the re-key process designed for use on versions up to
and including Intel® CSME 14.0:

a. If the system is not using the latest version of the iCLS software service,
the iCLS software should be updated.
b. Manufacturers should update the Intel® CSME firmware with firmware that
has a higher SVN. Following the firmware update, on the next boot, the Intel®
CSME firmware is designed to migrate the Intel® CSME data from the
previous, CSME-storage key to a new, storage key derived from the Intel-Root
key created by ROM by using the incremented SVN in the FW-manifest
header.
c. The iCLS-software service uses the Intel-designed, sigma protocol to
enable a secure connection over the internet to Intel-backend servers to
complete TCB recovery and retrieves both the new, Intel® EPID key and Intel
certificate for the new, Intel® PTT EK (the TPM EK).

Recoverability Aspects

631900 27

d. At some point, Intel revokes the Intel® EPID keys and the Intel® PTT EK
by publishing a Certificate-Revocation List (CRL). Once revocation is
performed, for example, the intention is that content providers can stop
streaming content to systems that have not been updated.

Figure 9. TCB Recovery with iCLS Connection

If a critical vulnerability that causes one or more components of the TCB to be
compromised is found in the Intel® CSME, after such vulnerability is brought to Intel’s
attention, Intel will evaluate the situation and might trigger TCB recovery, which can
revoke the compromised credentials and replace them with new ones.

Starting with Intel® CSME 15.0, TCB recovery is designed to be done with a FW
update that triggers the ODCA-re-key process by the ROM and FW only. The CSME-
crypto driver helps generate and renew application certificates using ODCA without
the need for server connection.

§§

Security Assets

28 631900

6 Security Assets
Intel® CSME utilizes a list of CSPs (Critical-Security Parameters) to help protect itself
from attacks and to support security services and applications. These CSPs are Intel®
CSME’s security assets. Examples of native CSPs (provisioned during the
manufacturing by Intel or the OEM or derived internally in Intel® CSME) include:

• Keys such as Chipset key, Intel® EPID key, Intel®-PTT-endorsement
credentials as described in the section about The Chipset Key and the Fuse-
Encryption Hardware Key.

• OEM, public-key hash: to enable secure boot, the OEM burns the hash of its
public key onto Intel® CSME’s FPF during manufacturing. The corresponding,
OEM-private key can be used to sign OEM-relevant components (example, the
BIOS-initial-boot block for Boot Guard, ISH code etc.).

• DRM-device keys: some DRM-device keys are provisioned by OEMs during
manufacturing, while other DRMs have their device keys provisioned by
license servers in the field.

• The crypto driver can derive additional keys from the FW-root keys derived by
ROM and pass them to the FW applications and services. The Intel® EPID key,
Intel® PTT EKs, and derivatives of the chipset key are keys used by TCB.

• In CSME 15.0 with the ODCA architecture, ROM can act as an embedded,
Certificate Authority and issue a certificate to the CSME FW. The CSME FW
using its certificate and private key generated by ROM can issue a certificate
for different usages, such as Boot Guard, AMT, PTT, DAL, and PAVP.

The CSME FW integrity is designed to be reviewed at boot by the Intel® CSME, signing
key and at runtime by keys indirectly derived from the chipset key. As intended, such
reviews also address the integrity of CSME OS and applications. The CSME Micro-
Kernel and TCB-ring3 processes help implement a trusted execution environment to
better ensure the Intel® EPID key, ODCA Keys, PTT keys, and other CSME-application
or -service keys are protected even within the CSME subsystem.

There is another category of CSPs that, by design, are installed or generated by Intel®
CSME applications after Intel manufacturing. These include:

• Intel® AMT-administrator passwords

• Verified, Intel® DAL applets’ hash digests (for faster loading by skipping
asymmetric, signature verification)

• Secrets owned by Intel® DAL applets

• Intel® PTT’s AIK (Attestation-Identity Key) and other keys

• DRM keys

At runtime, the goal is that CSPs are either saved in SRAM or paged out to UMA in
protected form. When Intel® CSME is powered off, the application CSPs can be stored
in NVRAM and better protected by the CSME-storage key.

Security Assets

631900 29

6.1 End-of-Manufacturing (EoM) Mandatory Step
The EoM step is mandatory for all OEMs to help make their assets more secure. As
designed, it consists of a command that OEMs need to run before shipping platforms
to end users. The command has the following goals:

• Write and lock manufacturers’ settings into FPFs along with RPMC (Replay-
Protection, Monotonic Counter) provisioning if supported.

• Close some CSME APIs used for debugging and manufacturing.

• Lock the SPI flash descriptor (the SPI controller implements access control on
BIOS, Intel® CSME, and other SPI regions).

Starting with Intel® CSME 16.0, a more flexible EoM was developed in response to
OEM requests to minimize OEMs missing EoM steps before shipment. To help
customers customize their manufacturing procedures, the EoM is designed to split the
three steps above into three stages.

§§

Security Process Improvements, Design
Enhancement and Hardening

30 631900

7 Security Process
Improvements, Design
Enhancement and Hardening
Intel is pursuing a course of continuous improvement of Intel® CSME’s security
capabilities.
Intel aims to follow the industry’s best security practices in all cycles of Intel® CSME
development. For example:
• Reducing attack surfaces by minimizing external and internal interfaces.
• Enhancing defense-in-depth instead of relying on a single measure to protect

critical assets.
• Enhancing the Intel® CSME security-mitigation mechanism ability to address the

rapidly changing threat model and make attacks more difficult and costlier for an
attacker.

• Significant efforts like external audits, independent third-party code reviews, high-
assurance-development practices, and expansion of red-team activities.

• Designed integration of automated-security checks in the CI/CD (Continuous
Integration / Continuous Development) pipeline used to better catch security
issues automatically during build, such as static-code analyzer

• Security-Advanced research intended to align with industry-best-in-class, security
practices with the goal of development and deployment of Advanced Fuzzing and
advanced-code-analyzer capabilities (refer to Security-Validation Technologies
section).

• Establishing an “Intel platform update (IPU)” release to help manage security
mitigations reaching the end points.

• Using the latest, known, cryptography guidelines published by authorities and
standard bodies. For example, starting in 2020, the Intel® CSME 15 (and later
Intel® CSME 16.0) is aims to comply with the U.S. government’s guidelines for the
transition period to quantum cryptography. Such compliance would include
increasing sizes to 256 bits for AES keys, 3072 bits for RSA keys, 384 bits for ECC
(Elliptic-Curve Cryptography), and 384 bits for SHA-2 digests.

• Policy of applying SDL (Security-Development-Lifecycle) methodology to all stages
of product development. Intel’s SDL is a set of activities and milestones that drive
high-quality, security outcomes in product and service development at Intel. The
SDL process makes security and privacy an integral part of Intel® CSME
production definition, design, development, and validation.

The FW re-design includes revising security-hardening features to better match or
exceed their levels in previous generations. For instance:

HW-based SKS designed to hold the kernel’s applications’ AES and HMAC keys in
hardware. When the keys are needed, the intention is for AES and HMAC
cryptographic accelerators to fetch the keys from the SKS directly and thereby not
expose the key values in firmware memory.

The module of cryptographic-accelerator hardware (OCS) and the CSME-firmware,
crypto driver passed stringent, third-party review and testing and achieved the FIPS
140-2 level 1 certificate from the NIST (National Institute of Standards and
Technology).

Security Process Improvements, Design Enhancement
and Hardening

631900 31

It is quite difficult, if not impossible, to avoid bugs in code. Updates and patches are a
regular part of modern, technology products. Protecting customers and their data
continues to be a critical priority for Intel. Intel actively works on connecting deep,
offensive-security research with deep, product knowledge to find and address
potential vulnerabilities on an ongoing basis and to work with the research community
to do the same through a bug-bounty program and by engaging academia. Given the
nature of its products, Intel commonly works with its customers and other third
parties, including hardware, software, services vendors, as well as end users, to
develop and deploy mitigations. Effective mitigation requires all of these parties to
work together in coordinated cooperation.

§§

Anti-exploitation Techniques

32 631900

8 Anti-exploitation Techniques
CSME adopts a multi-layer, anti-exploitation mechanism to make exploitability of
memory-safety issues (i.e., memory corruption) more difficult. The section below
references some of those techniques:

8.1 Stack-Protector XORed with Return Address
Intel® CSME introduced an enhancement to the standard, stack-canary, stack-
overflow protection: the XOR (Exclusive OR) canary.

The canaries are designed to provide a unique stack value generated randomly for
every thread (some CSME processes have more than one thread). The canaries also
are intended to be created by the Micro-Kernel when it creates threads of the
relevant, CSME-FW module by using the Intel® PCH DRNG. This enhanced
implementation, included in Intel® CSME versions including and up to 14.0, can add
“xoring” the random number with the return address from the present stack.

The introduction of CET-HW-based protection starting with Intel® CSME 15.0 aims to
eliminate the need for the XOR-canary technique on CSME FW. By design, the
standard implementation of the GCC (GNU-Compiler-Collection)-stack canary is
applied instead on functions that the GCC compiler detects as needing a canary.
(Refer to Control Enforcement Technology (CET).

8.2 SW-Forward Edge-Control-Flow Integrity (F-CFI)
F-CFI is a technique that reduces the risk associated with attacks aiming to redirect
the flow of a program’s execution. CSME is designed to implement F-CFI by adding an
end-branch tag before each indirect internal CSME-callable function, which tag
validates that the call is set to a valid location with a function pointer. This helps
prevent such attacks from arbitrarily controlling program behavior.

8.3 XORed-Function Pointers’ Control-Flow Integrity
(XF-CFI)
XF-CFI is an enhancement of F-CFI technique where all function pointers are designed
“xored” with a random value generated by Micro-Kernel using Intel® PCH DRNG, which
random value differs from the stack-canary value, is re-generated each boot, and is
unique per process. As conceived, the value is exposed to the process during loading
and initialization as well as during the process runtime.

By “xoring” all function pointers with a secret, random value, the intent is that an
attacker cannot craft a valid function pointer in the CSME process, when he/she finds
a vulnerability that allows an arbitrary write in a process’s memory, without finding an
additional information-leakage vulnerability that would disclose the canary.

Anti-exploitation Techniques

631900 33

8.4 Data-Address-Space-Layout Randomization
(DASLR)
The goal of DASLR is to randomize the process’s memory-writable sections, such as
base address of stack and heap per CSME boot. The goal is to make an arbitrary-write
vulnerability to CSME stack and heap less predictable and help ensure that the
attacker cannot take advantage of the static data CSME holds in those writable-
memory areas. This feature was introduced starting with CSME 15.0.

8.5 Write Protect
CSME kernel supports setting writable-memory area as read-only inside the heap.
This capability is called Write Protect, and once set, helps a CSME application prevent
its critical data kept in the heap from being modified. It can be used, for example, by
DAL when it keeps DAL applet code in heap and can help ensure DAL applet code
cannot be modified when stored in a writable-memory area like the heap. This feature
was introduced starting with CSME 15.0.

8.6 Intel® Control-Flow Enforcement Technology
(CET)
Starting with CSME 15.0, Intel® CET is supported not only by the TGL core CPU but
also by the CSME-dedicated CPU. CET is designed to provide HW-based protection
against control-flow-hijacking techniques used by an attacker to exploit vulnerabilities
by providing two key capabilities:

• Indirect-branch tracking: indirect-branch protection to help defend against
jump/call-oriented-programming (JOP/COP) attack methods.

• Shadow stack: return-address protection to help defend against return-
oriented-programming (ROP) attack methods.

CET is enabled in both CSME ring 0 and ring 3 firmware and starting CSME 16.0 CET is
enabled in ROM as well.

8.7 Remote Interfaces Full Address Space Layout
Randomization (ASLR)
Address space layout randomization (ASLR) is a feature that allows the OS to
randomize the location where system executables are loaded into memory. ASLR is
applied on CSME remote interface processes such as WLAN driver and Intel® AMT
processes. This feature was introduced starting with CSME 16.0.

8.8 Data Fortify
Starting Intel® CSME 16.0, Intel has added into CSME FW a new runtime systematic
mitigation called "Data Fortify" that enforces boundary check when a linear copy
operation is done, using standard API such as memcpy, strcpy etc. Before the linear

Anti-exploitation Techniques

34 631900

copy takes place, the maximum allowed size of the destination buffer is retrieved and
compared against the requested size to make sure the copy operation remains within
the buffer boundaries. Data Fortify aims to prevent linear buffer overflow (refer to
Advanced Threat Research Innovation Data Fortify Technical White Paper (#
749074)).

§§

https://cdrdv2.intel.com/v1/dl/getContent/749074

Additional Security Improvements

631900 35

9 Additional Security
Improvements
CSME contains additional security improvements as described in the sections below.

9.1 BUP Deprivilege and Enhanced-RBE-Security
Architecture
Before the BUP-Deprivilege enhancement, an exploit leading to arbitrary-code
execution in Intel® CSME BringUp or any other Intel® CSME Ring 3-FW-component
part of FW TCB could allow the creation of new Intel® CSME Ring 3-FW components
with any privilege and, as a result, access to secrets kept in the file system (example,
Intel® EPID and EK).

As a security enhancement, Intel removed privileges from Intel® CSME BringUp and
some other, Intel® CSME Ring 3-FW components and adopted a static-process-creation
design where all CSME-FW processes’ permissions are embedded in kernel and VFS at
FW build-time. In addition, all FW module code hashes are designed either embedded
in RBE or Process Manager and protected by a single FW manifest (the RBE manifest),
which is authenticated by ROM. This enhancement helps prevent all FW modules
outside of CSME TCB from creating arbitrary processes with arbitrary permission or
access secrets in memory or flash and get to critical HW resources like the Crypto-HW
accelerator and DFX HW. Even the CSME ring3 TCB is designed to have a specific role
and permission within the CSME OS, as explained in a previous section. Removing
Intel® CSME BringUp from the TCB also reduces the risk that TCB recovery will be
required in the future.

Starting with CSME 15.0, RBE security architecture was also improved. For earlier
CSME version, where a module ran at Ring0 with highest privileges in earlier CSME
versions, RBE has been broken down into multiple, security domains with minimum
privileges where the aim is for only a small part of the component to still run at Intel®
CSME Ring 0. This privileged part is designed to act like the CSME kernel: it helps
ensure memory protection between the RBE-security domain that runs at Intel® CSME
Ring 3 and control which HW can be accessed.

9.2 Firmware Measurements – Enhanced, Measured
Boot
This feature is intended to determine the integrity of the Intel® CSME firmware on the
platform. In addition, Enhanced, Measured Boot helps enforce the OEM’s system to be
compliant with the TCG (Trusted-Computing-Group) PC-Client Specification. Basically,
this feature enables measurement of the Intel® CSME FW and all IP FW stored in flash
and loaded by CSME, (example, PMC, Type C etc.), calculating their hash value, and
exposing the hash values to BIOS, which can make final measurement into the
platform TPM-PCRs (Trusted-Platform Module – Platform-Configuration Registers).
From the BIOS standpoint, when BIOS detects that Intel® CSME measurement is

Additional Security Improvements

36 631900

complete (via Extended-Range (ER), HECI Status Registers), BIOS is used to help
read the value in the ER and extend it to TPM PCR [0]. By design, the BIOS then
invokes the Intel® CSME HECI interface to view the Intel® CSME Measured-Boot-Event
Log and update the TPM Log.
CSME ROM is designed to measure first the CSME-RBE module and extend its manifest
hash and security version in the HECI ER, so that, from this point, the HECI ER cannot
be modified except to extend it. Starting with TGL, the HW helps enforce this feature.

9.3 AMT-related Enhancements
Starting with CSME 14.0, Intel® AMT, Host-Based Provisioning adds Mutual TLS to
enable in band provisioning and deprecating unsecure, CCM (Client-Control Mode) to
ACM (Admin-Control Mode) upgrade.
Starting with CSME 15.0, more security enhancements were made on Intel® AMT as
part of the effort to reduce attack surface and increase defense in depth on Intel
platforms. For instance, Intel-AMT-session attestation helps the Intel-AMT-
provisioning server determine whether it is communicating with an authentic CSME.
TLS certificate is used to help perform the CSME-FW attestation.
Intel-AMT-HW disable is another example of a HW enhancement that enables disabling
of the AMT HW in a non-vPro SKU.

9.4 Physical Fault-Injection Detection
Starting with the Alder Lake CPU, Intel has added the fault-injection detection
technology to CSME. This technology is designed to detect non-invasive, physical
glitch attacks on the pins supplying clock and voltage to CSME. It is also designed to
detect electromagnetic fault-injections. Invasive fault injection attacks, requiring
modification of the package containing CSME, are out of scope. Refer to
https://www.intel.com/content/www/us/en/newsroom/news/the-story-behind-new-
intel-security-feature.html#gs.8ktudt.

§§

https://www.intel.com/content/www/us/en/newsroom/news/the-story-behind-new-intel-security-feature.html#gs.8ktudt
https://www.intel.com/content/www/us/en/newsroom/news/the-story-behind-new-intel-security-feature.html#gs.8ktudt

Security-Validation Technologies

631900 37

10 Security-Validation
Technologies
Intel is also enhancing its own validation technologies. A few steps were added to our
regular validation using the latest industry techniques on silicon:

• Address Sanitization (i.e., ASAN)

• Fuzzing silicon-based capability

• Advanced, Fuzzing capable

• Fuzzing with Coverage guided (i.e., AFL)

• Run on real hardware and firmware environment (i.e., not simulation)

• Dedicated, security-code review

• Automated, static-code analysis

• Manual, penetration testing

§§

Conclusion

38 631900

11 Conclusion
By its architecture based on hardware root of trust and lowest-privilege security
principles, Intel® CSME represents a major building block for a safe computing
environment. Security is continually improved and enhanced through the Intel® CSME
generations via new defense in depth and anti-exploitations techniques as well as
options to help recover on the field in case of vulnerabilities. Intel is committed to
continue working on hardening Intel® CSME and delivering state-of-the-art solutions
to enable and enhance users’ secure-computing experience.

§§

Appendix

631900 39

12 Appendix

Table 2. Differences of Intel® CSME Features Cross Generation

Intel® CSME
14.0

Intel® CSME
15.0

Intel® CSME
16.0

Control Enforcement Technology Not supported Enabled in CSME
ring 0 and ring 3
firmware

Enabled in CSME
ring 0, in CSME
ring 3 firmware
and in ROM

Key Derivation Performed using
HMAC-SHA256 a
fixed string and
SVN

Performed via
NIST standard

Performed via
NIST standard

Chipset Key length in bits 256 512 512

Debug Enabled Chipset Key
length in bits

128 256 256

UMA allocation The bring-up
process ask the
BIOS during boot
to allocate
between 8MB
and 32MB of
UMA exclusively
for Intel® CSME
to use

BIOS to allocate
stolen memory
based on IMR total
size reported by
CSME during the
early handshake
with BIOS

BIOS to allocate
stolen memory
based on IMR
total size
reported by CSME
during the early
handshake with
BIOS

Intel® Enhanced Privacy ID
(Intel® EPID)

Supported Not Supported Not Supported

Intel® On Die Certificate
Authority (ODCA)

Not Supported Supported Supported

TCB recovery Via Intel
Capability
Licensing Service
(iCLS)

Via Intel® ODCA Via Intel® ODCA

Flexible End of Manufacturing Not supported Supported Supported

Address Space Layout
Randomization (Full ASLR)

Not supported Not supported Supported

Appendix

40 631900

Intel® CSME
14.0

Intel® CSME
15.0

Intel® CSME
16.0

Data Fortify Not supported Not supported Supported

Enhanced-RBE-Security
Architecture

Not supported Supported Supported

Intel-AMT-session attestation Not supported Supported Supported

Intel-AMT-HW disable Not supported Supported Supported

Physical Fault-Injection
Detection

Not supported Not supported Supported

Data-Address-Space-Layout-
Randomization (DASLR)

Not supported Supported Supported

Write-Protect Not supported Supported Supported

§§

References

631900 41

13 References
The white paper content is based on:

“BlackHat 2019 - Behind the Scenes of Intel Security and Manageability Engine”,
https://www.blackhat.com/us-19/briefings/schedule/index.html#behind-the-scenes-
of-intel-security-and-manageability-engine-15789

§§

https://www.blackhat.com/us-19/briefings/schedule/index.html#behind-the-scenes-of-intel-security-and-manageability-engine-15789
https://www.blackhat.com/us-19/briefings/schedule/index.html#behind-the-scenes-of-intel-security-and-manageability-engine-15789

	1 Introduction
	2 What is Intel® CSME?
	2.1.1 Silicon Initialization
	2.1.2 Manageability
	2.1.3 Security

	3 Overview and Capabilities
	4 Firmware Throughout Platform Boot (By Component)
	4.1.1 CSME ROM
	4.1.1.1 The Fuse-Encryption Hardware Key, the Chipset Key and its Derivatives

	4.1.2 ROM Boot Extension (RBE)
	4.1.3 Secure Boot Flow
	4.1.4 CSME OS Main Security Principles
	4.1.5 Micro-Kernel (uKernel)
	4.1.6 TCB, Operating System
	4.1.7 BringUp (BUP)
	4.1.8 Operating-System Drivers and Services
	4.1.9 Applications

	5 Recoverability Aspects
	5.1 Firmware Update and CSME Firmware Version Control (Intel® FVC)
	5.2 Intel® Enhanced Privacy ID (Intel® EPID) and On-Die, Certificate Authority (ODCA)
	5.3 TCB Recovery and Intel Capability-Licensing Service

	6 Security Assets
	6.1 End-of-Manufacturing (EoM) Mandatory Step

	7 Security Process Improvements, Design Enhancement and Hardening
	8 Anti-exploitation Techniques
	8.1 Stack-Protector XORed with Return Address
	8.2 SW-Forward Edge-Control-Flow Integrity (F-CFI)
	8.3 XORed-Function Pointers’ Control-Flow Integrity (XF-CFI)
	8.4 Data-Address-Space-Layout Randomization (DASLR)
	8.5 Write Protect
	8.6 Intel® Control-Flow Enforcement Technology (CET)
	8.7 Remote Interfaces Full Address Space Layout Randomization (ASLR)
	8.8 Data Fortify

	9 Additional Security Improvements
	9.1 BUP Deprivilege and Enhanced-RBE-Security Architecture
	9.2 Firmware Measurements – Enhanced, Measured Boot
	9.3 AMT-related Enhancements
	9.4 Physical Fault-Injection Detection

	10 Security-Validation Technologies
	11 Conclusion
	12 Appendix
	13 References

