
This technical article is intended to address an issue discovered in
some Original Equipment Manufacturers (OEM) or Original Design
Manufacturers (ODM) production systems where system firmware
(FW) or an Integrated Firmware Image (IFWI) was found to
contain one or more preproduction or example test keys. The
private keys for these preproduction or test keys were often
included in system Basic Input Output System (BIOS) development
information provided to OEMs or ODMs for their use in platform
development and testing and were not intended to be used in
production systems or environments.

Given the rise of recent cyber-attacks in the industry that have
involved exfiltration of BIOS source code and OEM private keys, this
paper provides guidance on the importance of protecting OEM
private keys. The Development and Test Keys section offers more
details about the potential impact of public exposure of test private
keys.

Document Scope

This document provides background information on manifesting
and signing of Intel and OEM components and the establishment of
the Chain of Trust (COT). This article includes some information on
Intel® Boot Guard data structures as well as an example to
demonstrate the COT flow through loading of the Initial Boot Block,
which represents the hand-off to BIOS. The information in this
document is generally limited to products based on 13th Generation
Intel® Core™ Processor platforms and 3rd Generation Intel®
Xeon® Scalable Processor platforms, or earlier. Guidance for
manifesting and signing components for future products is subject
to change.

Background

When OEMs or ODMs develop platforms, the system BIOS is also
developed to handle setup and configuration of system hardware to
prepare for and to initiate loading of an operating system (OS).
Additionally, the OEM or ODM may develop firmware for other
microcontrollers in the system (such as Integrated Sensor Hub
(ISH) or may include Intel FW for other system agents (such as

Intel® Converged Security and Management Engine (Intel®
CSME)). These firmware components are integrated together into
an Integrated Firmware Image (IFWI) which is programmed into
the system flash or eMMC for use. OEMS and ODMs can activate
several features that use key-based technology to protect the
integrity of the firmware and IFWI, block unauthorized replacement
of the IFWI, and ensure system integrity when booting the
OS. Additionally, OEMs and ODMs should review their methods for
protecting their private keys to ensure that these keys remain
secure.

Intel provides OEMs, ODMs, and Independent BIOS Vendors (IBVs)
source code and binary code modules that serve as a reference for
how to develop system BIOS and other platform FW, as well as
tools to manage the setup and configuration of that firmware. Intel
provides training and reference documentation to educate
customers on recommended methods for how to develop a properly
configured and secure system.

In the reference code provided for the above purposes, Intel
included documentation and examples for how to build the
reference version of the firmware, including example keys to
demonstrate the process. The documentation enumerated the
process necessary to build a production level IFWI, called out
required configuration changes, and explained both how to
generate private/public key pairs and how to replace the example
keys with OEM / ODM / IBV production keys. However, some
production systems have been identified that were using the
example keys from the reference code instead of OEM/ODM
generated keys.

Table 1: Acronyms

Term Description
ACE Audio and Context Engine
ACM Authenticated Code Module
CSME Converged Security Management Engine
EOM End of Manufacturing
FPF Field Programmable Fuses
FW Firmware

Table 1: Acronyms

Term Description
FVC Firmware Version Control
HW Hardware
IBB Initial Boot Block
IFWI Integrated Firmware Image (system firmware image on serial

platform interface)
Intel®
DAL

Intel® Dynamic Application Loader

Intel®
MEU

Intel® Manifest Extension Utility

Intel®
MFIT

Intel® Modular Flash Image Tool

ISH Integrated Sensor Hub
IUP Independently Updatable Partition
OEM
KM

Original Equipment Manufacturer Key Manifest (containing
OEM public key hashes to authenticate OEM-signed firmware
components.

OS Operating System
PCH Platform Controller Hub
PKH Public Key Hash
ROT
KM

Root of Trust Key Manifest (containing Intel public key hases
to authenticae Intel-signed firmware components)

SPI Serial Peripheral Interface
SVN Security Version Number. Used in firmware

upgrade/downgrade capabilities.
VCN Version Control Number. Used in firmware

upgrade/downgrade capabilities.

Introduction to Signing

Why is Signing Important?

It is critical for platform safety to make sure that the firmware is
loaded upon boot from a trusted source. The process of signing the
firmware components ensures that the owner of the component
(whether that is an OEM or Intel) authorizes the loading and
running of their component on the platform.

This is possible by establishing a chain of trust starting from the
hardware of the platform itself. The hardware authenticates a key

manifest (KM), and the key manifest is then used to authenticate
other firmware components, as shown in Figure 1 below.

Figure 1: Chain of Trust from HW to OEM Components

Who Performs the Signing?

Intel signs all firmware components to be loaded by the Intel®
CSME. OEMs may add or replace capabilities for several
components, such as ISH and Audio and Context Engine (ACE).
Components must be signed, and an OEM KM is required to load
any OEM components and use their capabilities.

If an OEM wishes to only use the Intel-provided components, the
OEM is not required to sign anything, and no OEM KM is added to
the IFWI.

When is Signing Performed?

Research and development facilities sign components and create
and sign the OEM KM prior to manufacturing. At the time of
manufacturing, the ready-signed OEM components and OEM KM
are entered into the image creation tool (Intel® MFIT), and when
the IFWI is flashed, the key used to authenticate the OEM KM is
burned to the fuses. This will be discussed in greater detail in the
following chapters.

Theory of Signing

This section discusses the theory of signed structures, signing
components, and how authentication is performed during boot
flow.

Cryptography Basics

Both the signing flow and the process to establish a chain of trust
are based on the concepts of cryptography. The signing process
uses two cryptographic functions: hashing and RSA data
encryption.

Hashing

Hashing is a one-directional mathematical operation which is simple
to calculate, yet computationally difficult to reverse. Hashing
produces completely different outputs even with small changes in
the input data.

For products currently in the market, the hashing functions used
are SHA-256 and SHA-384 which are from the SHA2 family of
cryptographic functions, or ShangMI 3 (SM3), which is a hash
function similar to SHA2.

Data Encryption using RSA Algorithm

Using a private and public key pair which are mathematically linked,
data can be encrypted and then decrypted (a process known as
reverse encryption). The private key is used to encrypt the data,
and then the public key can be used to decrypt it back to the
original source data.

In the signing process of components, the data being encrypted is
the hash of the original binary component, and the public key is
used to decrypt the data back to its original format during
verification. It is important for the private key to be stored securely,
so that only the originating entity can perform the encryption. The
public key is available to the public, since once the key is used to
decrypt the signature, the output is compared with the binary hash
present in the component. The data will only match if the public
key mathematically corresponds perfectly to the private key used
during encryption.

IFWI Boot Trust Flow

The Chain of Trust (COT) begins with the hash of the OEM public
key, which is programmed into field programmable fuses (FPF) at
the end of the manufacturing process. Multiple technologies are

chained together to verify that authorized firmware and software is
being used throughout the system BIOS and OS boot process.

Boot Flow Overview

Figure 2 is a high-level representation of the boot flow that depicts
the signing authority for each of the boot modules. At system
power up, the management engine (ME) begins executing, and
then authenticates and loads runtime updates and OS FW for the
ME and Power Management Controller (PMC). The PMC/ME
performs a host reset to the CPU. Prior to fetching any BIOS code,
the CPU begins by verifying the firmware interface table (FIT) and
then authenticates and loads the microcode update (MCU). If the
FIT has an entry for an Authenticated Code Module (ACM), the CPU
loads the ACM, authenticates it, and then executes it. The ACM
loads and verifies the Boot Policy Manifest (BPM) and executes the
Initial Boot Block (IBB). The IBB verifies the hash of the OEM Boot
Block (OBB) and then executes the OBB followed by the OS boot
loader. The OS boot loader then loads the SINIT ACM, which is
authenticated by hardware. The setup necessary to maintain the
chain of trust for loading the OS or Virtual Memory Manager (VMM)
is complete when the SINIT ACM is executed.

Figure 2: IFWI Boot Flow with Intel Boot Guard

Note that, as shown in the figure above, the platform OEM is
responsible for the chain of trust through the IBB, OBB, and loading

of the Boot Loader portions of the system BIOS, and Microsoft is
responsible for signing the initial OS module to load the OS/VMM
(Secure Boot).

Field Programmable Fuses

The field programmable fuses (FPFs) are used by platform
manufacturers to provision the boot policy to be used on the
system. They provide the foundational mechanism for verifying the
integrity of the KM and BPM.

The FPFs are persistently stored in the Platform Controller Hub
(PCH), and once provisioned, a hardware lock is closed. The fuses
cannot be changed for the life of the platform. This is referred to as
the End of Manufacturing (EOM). The FPFs are not directly
accessible by the OEM and can only be programmed via the
manageability engine in the PCH. Thus, Intel provides special tools
to allow the OEM to specify their boot policy and public key hash
value.

FPF policies are clustered in registers: Restrictions (BP.RSTR), Type
(BP.Type), and Revocation (BP.Revocation). None of these FPF
registers are directly accessible by BIOS. Policies set by these FPF
registers are read by S-ACM and propagated to BIOS via the
BTG_SACM_INFO model specific register (MSR) and
ACM_POLICY_STATUS register.

Another notable FPF register is BP.KEY, which holds the digest of
KM signing key. This register is used by S-ACM and SINIT ACM and
is available to BIOS or information tools via the Read File
command.

Analyzing the Integrated Firmware Image (IFWI)

The following discussion is a look at the IFWI and the primary
structures within it that are used to hold keys and information that
are used in the authentication and signature verification phases
when loading FW components during the boot flow to ensure only
FW that has been authorized by the OEM is loaded. The basic flow
of steps is shown to describe how the flow should work when
properly configured with some discussion of errors or decisions

made with regards to implementation and how that may affect
system security.

Typical systems, both client and server, store the IFWI in flash
memory that is in the physical memory address range immediately
below the 4 GB boundary (ending at address 0FFFFFFFFh). The
lowest extent of the flash device depends on the size of device that
was selected to hold the required FW. The size of the device is
commonly in the range of 8 MB to 64 MB. So, as an example, if a
system uses a 32 MB flash device, the device will be addressed
starting from the address 4 GB - 32 MB or in the address range of
0FE000000h – 0FFFFFFFFh.

To analyze the IFWI, many techniques may be used to collect the
IFWI image. Some examples include saving the IFWI from the EFI
prompt, using various utilities to read the IFWI, saving the image
using a tool provided by the OEM or BIOS vendor, or downloading a
BIOS image from the OEM website and extracting the IFWI. Note
that BIOS updates from OEMs can come in several forms, ranging
from a full IFWI to capsule update files (which are just updates for
selected portions of the IFWI), to custom firmware images that
contain additional security layers intended to block malicious IFWI
updates. This document is not intended to explain the details of
extracting the IFWI image, but rather how to look at the key
signing elements of the IFWI after an image is available.

Firmware Interface Table (FIT)

A FIT is a data structure inside BIOS flash and consists of multiple
entries. Each entry defines the starting address and attributes of
different components in the BIOS. FIT resides in the BIOS flash
area and is located by a FIT pointer at physical address (4GB -
40h). Refer to Figure 3 below.

The FIT is generated at build time based on the size and location of
the firmware components.

The CPU processes the FIT before executing the first BIOS
instruction located at the reset vector (address 0FFFFFFF0h). If a
microcode update for the board support package (BSP) is pointed

by a FIT type 1 entry, the MCU is loaded before executing the BIOS
code at the reset vector and is applied to all threads within the
package.

Figure 3: FIT
Layout in Flash ROM

Refer to the FIT specification for complete documentation.

The FIT pointer points to the first byte of the Header (type 0) entry
in the FIT. Each entry in the Firmware Interface Table is 16 bytes in
length. The entry type can be found 14 bytes from the beginning of
the FIT entry and is indicated using bits 6:0. The fixed address of
the object pointed to is at an offset of 0 bytes (8 bytes in length).

Table 2: FIT Entry Format

Byte Offsets 15 14 13:12 11 10:8 7:0

Meaning
Checksum Bit 7 - C_V

Bits 6:0 - Type
Version Reserved Size Address

Table 3: FIT Entry Types

FIT Entry Type Description (Intel® 64 and IA-32 Architectures)
0x00 FIT Header Entry

0x01 Microcode Update Entry

0x02 Startup AC Module Entry

0x03 Diagnostic AC Module Entry

0x04 – 0x06 Intel Reserved

0x07 BIOS Startup Module Entry

0x08 TPM Policy Record

0x09 BIOS Policy Record

0x0A TXT Policy Record

0x0B Key Manifest Record

0x0C Boot Policy Manifest

0x0D - 0x0F Intel Reserved

0x10 CSE Secure Boot

0x11 - 0x2C Intel Reserved

0x2D Feature Policy Delivery Record

0x2E Intel Reserved

0x2F JMP $ Debug Policy

0x30 - 0x70 Reserved for Platform Manufacturer Use

0x71 - 0x7E Intel Reserved

0x7F Unused Entry (skip)

FIT Example

For this paper, two items of interest in the FIT are the Key Manifest
entry and the Boot Policy Manifest entry. These entries are used to
authenticate the integrity of FW volumes before executing the code
or using data contained within those volumes.

Note: When locating the various structures discussed below, look
for the UEFI Structure ID. Many of these structures contain a UEFI
Structure ID string to mark the beginning of the structure. The
combination of the address in the FIT as well as the UEFI Structure
ID can be used to verify the location of the structure. An example
of this can be seen below. The FIT Pointer is shown below (little
endian format) and highlighted in italic.

ffffffc0: 0083 ffff 0000 0000 0000 0000 0000
0000
ffffffd0: bf50 41eb 1d00 0000 0000 0000 0000
0000 .PA.............
ffffffe0: 183b feff ebfe cf00 0000 0000 0000
0000 .;..............
fffffff0: 9090 e9bb fd00 0000 e000 0000 0000
feff

The FIT pointer above (at 0FFFFFFC0h) contains the fixed address
of 0FFFF8300h, where the FIT is found and confirmed with the
FIT structure ID value in the first record. In the data below, the
FIT entry types are highlighted in bold, and the addresses of those
structures are highlighted in bold italic.

ffff8300: 5f46 4954 5f20 2020 0e00 0000 0001
0056 _FIT_ V
ffff8310: 6000 d2ff 0000 0000 0000 0000
0001 0100 `...............
ffff8320: 6050 d3ff 0000 0000 0000 0000
0001 0100 `P..............
ffff8330: 60cc d4ff 0000 0000 0000 0000
0001 0100 `...............
ffff8340: 60f8 d5ff 0000 0000 0000 0000
0001 0100 `...............
ffff8350: 6024 d7ff 0000 0000 0000 0000

0001 0100 `$..............
ffff8360: 0080 ecff 0000 0000 0000 0000
0001 0200
ffff8370: 0084 ffff 0000 0000 c007 0000
0001 0700
ffff8380: 0000 edff 0000 0000 0010 0100
0001 0700
ffff8390: 0000 ceff 0000 0000 0030 0000
0001 0700 0......
ffff83a0: 0000 deff 0000 0000 00e8 0000
0001 0700
ffff83b0: 0000 feff 0000 0000 9017 0000
0001 0700
ffff83c0: 0079 ffff 0000 0000 4102 0000
0001 0b00 .y......A.......
ffff83d0: 007e ffff 0000 0000 eb02 0000
0001 0c00 .~..............

OEM Key Manifest (OEM KM)

The OEM Key Manifest plays a central part in the signing
mechanism. The OEM KM lists the public key hashes used to
authenticate the OEM-created binaries to be loaded. The OEM Key
Manifest itself is signed, and its corresponding public key hash is
programmed into the FPF at the End of Manufacturing (EOM). This
creates a secure verification mechanism where firmware verifies
that the OEM Key Manifest was signed with a key owned by the
OEM. Once the OEM KM is authenticated, each public key hash
stored within the OEM KM can authenticate the corresponding FW
component.

Important Note! Since the hash fused into the platform hardware
can never be changed, it is critical to secure the private key used to
sign the OEM Key Manifest. If at any stage an OEM would like to
update the image on the platform, the OEM KM for the new image
must be signed with the same key used for the original OEM KM.

OEM KM Manifest Data Description

The OEM KM (and BPM) uses a key based on an RSA private/public
key pair. The requirements for the key and hash functions used can
be determined by parsing the KM. For current products, two
structure formats have been used for the KM header and the
specific format can be determined from the Structure Version value,
0x10 and 0x21. Note, this data should be considered an example
for understanding as the format of these structures will continue to
change. These structures are shown in Table 4 and Table 5.

Table 4: Key Manifest Header v1.0

Field Size (Bytes) Description
StructureID 8 ‘__KEYM__’. Abbreviation of Key Manifest

Structure Version 1 10h

Key Manifest Version 1 Version of the Key Manifest defined by the
Platform Manufacturer. The actual value is
transparent to Boot Guard and is not
processed by Boot Guard.

KMSVN 1 Bit definition:
7:4 – Reserved. Must be 0
3:0 – Key Manifest Revocation Value

KeyManifestID 1 7:4 – Reserved. Must be 0
3:0 – The Key Manifest Identifier

BPKey Size of (SHA_HASH
_STRUCTURE)

KeyHash for Public Key used to sign BPM

KeyManifestSignature Size of
(KEY_AND_SIGNATURE
_STRUCT)

Key manifest signature with Public Key
stored in FPF

Table 5: Key Manifest Header v2.1

Field Size (Bytes) Description
StructureID 8 ‘__KEYM__’. Abbreviation of Key

Manifest

Structure Version 1 21h

Reserved 3 Alignment, must be 0

KeySignatureOffset 2 Key Manifest Signature offset

Reserved 2 3 Alignment, must be 0

KeyManifestRevision 1 Revision of the Key Manifest
defined by the Platform
Manufacturer

KMSVN 1 Bits 7:4 – Reserved, must be zero
Bits 3:0 - Key manifest Security
Version Number

Key Manifest ID 1 The key Manifest Identifier (KMID)

KmPubKeyHashAlg 2 Hash algorithm of OEM public key
digest programmed into the FPF

KeyCount 2 Count of KeyHash structures

KmHash[KeyCount] KeyCount * Size of (SHA_KMHASH
_STRUCTURE)

Array of KmHash structures.
Describes BPM pubkey digest
(among other)

KeyM12anifestSignature Size of (KEY_AND_SIGNATURE
_STRUCT)

Key manifest signature with Public
Key stored in FPF

The following format primitives are used by many fields of the
following data structures. These primitives can be found in the
document TCG Trusted Platform Module Library, Family 2.0.

For reference, the format primitives are listed here:

TPM_ALG_SHA1 = 0x0004 – hash algorithm
TPM_ALG_SHA256 = 0x000B – hash algorithm
TPM_ALG_SHA384 = 0x000C – hash algorithm
TPM_ALG_SM3_256 = 0x0012 – hash algorithm
TPM_ALG_RSA = 0x0001 – key algorithm
TPM_ALG_ECC = 0x0023 – key algorithm
TPM_ALG_RSASSA = 0x0014 – signature scheme
TPM_ALG_RSAPSS = 0x0016 – signature scheme
TPM_ALG_ECDSA = 0x0018 – signature scheme
TPM_ALG_SM2 = 0x001B – signature scheme
TPM_ALG_NULL = 0x0010 – NULL algorithm

Table 6: SHA_KMHASH_STRUCT

Field Size (Bytes) Description
Usage 8 Digest usage bitmask

See Table 7 for assigned bit positions
More than one bit can be set to indicate shared digest
usage.

Digest Size of (SHA_HASH
_STRUCTURE)

KeyHash - Actual digest description structure

Table 7: Usage Bit Assignments

Bit Usage
0 Boot Policy Manifest signing pubkey digest

1 FIT Patch Manifest signing pubkey digest

2 ACM Manifest signing pubkey digest

3 SDEV signing pubkey digest.

4 PFR CPLD Root of Trust pubkey digest

5 - 32 Reserved for Intel Use

33 iUnit BootLoader Manifest

34 iUnit Main FW Manifest

35 Audio Image0 Manifest

41 ISH Manifest

43 OEM Debug Manifest (token)

45 OEM Key Manifest

53 OEM Dnx Ifwi Manifest

57 OEM Descriptor Manifest

Table 8: SHA_HASH_STRUCT

Field
Size
(Bytes)

Description

HashAlg 2 Hash Algorithm ID – one of TPM_ALG_ID values

Size 2 Digest size in bytes – one of ALG_DIGEST_SIZE values matching
HashAlg

HashBuffer Size of
Hash

The buffer containing digest value.

Table 9: RSA KEY_AND_SIGNATURE_STRUCT

Field Size (Bytes) Description
Version 1 Must be 10h

KeyAlg 2 TPM_ALG_RSA

Key Size of
(RSA_PUBLIC_KEY
_STRUCT)

RSA public key structure

SigScheme 2 TPM_ALG_RSASSA or TPM_ALG_RSAPSS

Note: TPM_ALG_RSASSA is intended to indicate use of
the RSASSA-PKCS1-v1_5 signature format and
TPM_ALG_RSAPSS is the RSASSA-PSS signature
format.

Signature Size of
(RSA_SIGNATURE
_STRUCT)

RSA signature structure

Table 10: RSA_PUBLIC_KEY_STRUCT

Field Size (Bytes) Description
Version 1 Must be 10h

KeySize 2 Number of bits in the modulus (2048 or 3072)

Exponent 4 The public exponent. Must be 10001h

Table 10: RSA_PUBLIC_KEY_STRUCT

Field Size (Bytes) Description
Modulus KeySize / 8 The modulus in Little Endian format

Table 11: RSA_SIGNATURE_STRUCT

Field
Size
(Bytes)

Description

Version 1 Must be 10h

KeySize 2 Number of bits in the modulus (2048 or 3072)

HashAlg 2 Hash algorithm used for signature (TPM_ALG_SHA256,
TPM_ALG_SHA384)

Signature KeySize / 8 RSASSA-PKCS1-v1_5 / RSASSA-PSS Signature

Table 12: ECC KEY_AND_SIGNATURE_STRUCT

Field Size (Bytes) Description
Version 1 Must be 10h

KeyAlg 2 TPM_ALG_ECC

Key Size of (ECC_PUBLIC_KEY _STRUCT) ECC public key structure

SigScheme 2 TPM_ALG_ECDSA or TPM_ALG_SM2

Signature Size of (ECC_SIGNATURE _STRUCT) ECC signature structure

Table 13: ECC_PUBLIC_KEY_STRUCT

Field Size (Bytes) Description
Version 1 Must be 10h

KeySize 2 Number of bits in the public key component (256 or 384 bits)

Qx KeySize / 8 Qx coordinate

Qy KeySize / 8 Qy coordinate

Table 14: ECC_SIGNATURE_STRUCT

Field Size (Bytes) Description
Version 1 Must be 10h

KeySize 2 Number of bits in the public key component (256 or 384 bits)

HashAlg 2 Hash algorithm used by signing process

(TPM_ALG_SHA256, TPM_ALG_SHA384, or TPM_ALG_SM3_256)

R KeySize / 8 R component of signature in LE format (32 or 48 bytes)

S KeySize / 8 S component of signature in LE format (32 or 48 bytes)

OEM Key Manifest Example

Using the example IFWI above, the OEM Key Manifest can be
located using FIT type 0bh record address of 0FFFF7900h. The KM
structure can be identified with the UEFI Structure ID string of
__KEYM__. The format of the KM structure may change over time.
To identify the specific structure format, use the Structure ID and
the Structure Version information to properly match the structure
format.

In the following example, the Structure ID is __KEYM__, and the
Structure Version is 10h. In comparing with OEM KM structures
above, the Structure Version matches Table 4. If the Structure
Version had been 21h, then the structure in Table 5 would be used.

ffff7900: 5f5f 4b45 594d 5f5f 1010 0001 0b00
2000 __KEYM__...... .
ffff7910: d550 2ff0 6169 9f9e 2b7c 64ab 4137
4f56 .P/.ai..+|d.A7OV
ffff7920: ae6f 45db 870d dba4 733d dc30 3238
78bb .oE…..s=.028x.

ffff7930: 1001 0010 0008 0100 0100 ff84 9b32
ff8a 2..
ffff7940: 956b 5949 868d 6191 0165 1a35 ae51
182a .kYI..a..e.5.Q.*
ffff7950: 8f55 0592 a82f f14e 9640 3f35 c2fa
d403 .U.../.N.@?5....
ffff7960: c8f9 1310 f0e4 adcf 747c 62a0 805d
40d8 t|b..]@.
ffff7970: 802e 4740 24df fd02 2889 9108 6ad8
18af ..G@$...(...j...
ffff7980: b83a 967d bee0 73a9 4b20 fa09 5751
e6be .:.}..s.K ..WQ..
ffff7990: 3d43 78c9 9429 f5af 93b1 b303 a588
6bc7 =Cx..)........k.
ffff79a0: d728 f451 eff0 f23a 0af9 812e b6c5
5b9b .(.Q...:......[.
ffff79b0: 1275 faeb d16a cedb 9f52 b08a 5ce7
802e .u...j...R..\...
ffff79c0: 0971 126f a691 0ace 7a70 b132 84e9
a12e .q.o....zp.2....
ffff79d0: 3f4f 953d e93e c0b1 941a 2b7e 6f47
c714 ?O.=.>....+~oG..
ffff79e0: e2d5 cb48 1a42 30c8 b803 2815 183a
a32e ...H.B0...(..:..
ffff79f0: 5b19 9714 5063 176d da64 2485 c271
649d [...Pc.m.d$..qd.
ffff7a00: 6fe2 9007 60b5 27c8 6f51 6de7 3f5c
777a o..’`.'.oQm.?\wz
ffff7a10: 29aa 5417 3a2f 3b51 d071 3c4f 4c8c
eeb8).T.:/;Q.q<OL...
ffff7a20: b0bc 3869 d5ab a074 3796 d8f6 5001
371e ..8i...t7...P.7.
ffff7a30: ea7b b1a1 472d 67ce 5dbf 1400 1000
080b .{..G-g.].......
ffff7a40: 00bd 948b 6f5b 5f59 6c78 557c e968
3985 o[_YlxU|.h9.
ffff7a50: 1452 e76e 87eb 475e 168e 31bf 52b8
6b7a .R.n..G^..1.R.kz
ffff7a60: 9e76 13d4 591a a72b 7f30 a831 205c
5487 .v..Y..+.0.1 \T.
ffff7a70: e4e0 42ae db36 8aee 4be8 dc3c 975e

4126 ..B..6..K..<.^A&
ffff7a80: 1f10 dc36 556c 041d c1ab fc25 6414
1c85 ...6Ul.....%d...
ffff7a90: 27c1 8854 3c64 f442 707c 622a 758a
817‘ '..T<d.Bp|b*u..|
ffff7aa0: 90d0 be27 d1c4 6d4d 6f28 a342 4aa9
f711 ’..'..mMo(.BJ...
ffff7ab0: 4e76 fe3e f32e 4936 4921 4339 6688
1f79 Nv.>..I6I!C9f..y
ffff7ac0: 53fb 650e b870 b4b8 113e e1c5 f43e
755a S.e..p...>...>uZ
ffff7ad0: 9cd9 68aa a16f a08d 6ced 5931 4888
a547 ..h..o..l.Y1H..G
ffff7ae0: adc8 716d 0591 11fa 092b d66e 976d
c6f8 ..qm.....+.n.m..
ffff7af0: d48b 47e9 27d8 c8bd 08f1 02a2 b08b
2ed4 .’G.'...........
ffff7b00: d2c1 54d0 69dc 1eef 5aa7 881c 0342
928f ..T.i...Z....B..
ffff7b10: 2f55 c47e cfba 0349 c8e5 b006 1297
6037 /U.~...I......`7
ffff7b20: 4bcd 03f4 7e92 bac5 815d 9990 a118
0983 K...~....]......
ffff7b30: ace8 6bf8 9ff2 5216 916b 6da8 a30e
5c60 ..k...R..km...\`
ffff7b40: 11ff ffff ffff ffff ffff ffff ffff
ffff

In reviewing this structure format, the OEM KM contains one public
key hash (called BPKey), used to authenticate the public key used
to sign the Boot Policy Manifest (BPM), and a public key and
signature (called KeyManifestSignature) used to verify the
authenticity of the OEM KM. Most of the structures defined in this
paper may include other embedded structures. For example, within
this OEM KM, there are two other structures: the
SHA_HASH_STRUCTURE and the KEY_AND_SIGNATURE_STRUCT,
as indicated in the Size column. Descriptions for these structures
can be found in Table 7, Table 8, and Table 11. Just as in the case
above, the specific structure definition may be dependent on data
values.

When analyzing the example IFWI, we find that the BPKey value
starts at an offset of 12 bytes from the start of the structure. The
first element of BPKey is HashAlg (shown in gray below), which
indicates the function used to generate the public key hash. The
two-byte value of 000bh indicates the hash was generated using
the SHA256 function. The next two bytes indicate the length of the
hash value, (in this case, 0020h bytes). Finally, the next 32-bytes
(0020h) is the hash value.

The KeyManifestSignature definition begins with a one-byte version
value (10h), followed by KeyAlg that describes the format of the
public key value. In the data above, the value of 0001h indicates
the key is an RSA type. Because the key is an RSA key, the
definition in Table 9 must be used. The next byte is a structure
version (10h), followed by a two-byte KeySize value that indicates
the key size (in bits). In the case above, the key is a 2048-bit key.
The next two values are the RSA public key exponent (highlighted
in cyan) and modulus (highlighted in green) values. The SigScheme
and Signature elements complete the KeyManifestSignature
structure. SigScheme describes the signature function used (in this
case, 0014h, indicating RSASSA). The Signature element structure
is shown in Table 11, which begins with a one-byte version value,
followed by the KeySize and HashAlg values. In this case, the
signature KeySize is 2048 bits, and it uses the SHA256 hashing
algorithm. The final 2048 bits (256 bytes) is the resulting signature
calculated using the private key.

Following the decoding of the OEM KM and proper verification of
the OEM KM signature, the public key in the KeyManifestSignature
is hashed and compared with the hash value programmed in the
FPF. If the hash matches the FPF data, then the system will trust
the public key hash stored in BPKey for the Boot Policy’s signature
check.

Note: It is often prudent for the Platform Manufacturer to restrict
the use of a “master” key (which is what they put into Boot Policy
Key) and allow a “child” key to sign the BP Manifest. This way, if
the “child” key is compromised, the platform manufacturer can

either revoke the Key Manifest or simply use a new KeyManifestID
without any impact to hardware (whether existing/shipped or new).

Hash Algorithm

The hash algorithm used may vary between products or between
products intended for different markets. The specific hash function
used is indicated in the IFWI data structures where the hash value
appears.

Note: The data used in the hash of an RSA public key may vary
between products; either performing the hash of the modulus or
performing the hash of the modulus concatenated with the
exponent.

To determine which method was used for a particular product,
perform a calculation using both methods and compare the results.
Note that for all calculations, the values are in little-endian (LE)
format.

6th and 7th Generation Intel® Core™ Processor-based Platforms

 RSA key modulus size == 2048 bits (256 bytes) and standard
exponent == 0x00010001 (4 bytes)

 Modulus (256 bytes) are hashed using SHA256 algorithm to
obtain BP.KEY value.

 BP.KEY = SHA256 (KM.LE (Key.modulus))

Intel® Pentium® Silver N4200, N5030, N5040, Celeron® J3355, J3455, J4025, J4125, N3350,
N4020, N4120, 8th, 9th, and 10th Generation Intel® Core™ Processor-based Platforms

 Key must use modulus size == 2048 bits (256 bytes) and
standard exponent == 0x00010001 (4 bytes)

 Modulus and exponent must be concatenated to obtain 260
bytes, which are then hashed using SHA256 algorithm to obtain
BP.KEY value.

 BP.KEY = SHA256 (KM.LE (Key.modulus) || LE (Key.exponent))

Intel® Atom x6000E Series, Intel® Pentium® Silver J5005, N5000 and Celeron® J4005, J4010,
N4000, N4100 Processors, and 11th Generation Intel® Core™ Processor-based and later Platforms

 Key must use modulus size == 3072 bits (384 bytes) and
standard exponent == 0x00010001 (4 bytes)

 Modulus and exponent must be concatenated to obtain 260
bytes, which are then hashed using SHA384 algorithm to obtain
BP.KEY value.

 BP.KEY = SHA384 (KM.LE (Key.modulus) || LE (Key.exponent))

Server Platforms

 The value of BP.KEY register in server platforms use SHA256 or
SM3 and does not have to include the exponent in the digest
computation.
BP.KEY = SHA384 (KM.LE (Key.modulus))
BP.KEY = SM3 (KM.LE (Key.Qx) | KM.LE (Key.Qy))

Opting Out of the OEM KM

Intel recommends OEMs always add an OEM KM to their images,
even if they have not yet identified a use for it at the time the IFWI
is manufactured. This can be done by adding an empty OEM KM
(no entries), which serves as a placeholder in the image. Later, the
image can be updated to include an OEM KM with relevant keys
and public key hashes.

However, OEMs may choose to not use an OEM KM in their images.
If the OEM KM has not been configured at EOM, an FPF will be
permanently set to indicate that the OEM KM is not present. Once
this happens, that platform image cannot be updated to use an
OEM KM. Note that Intel-provided components, such as Intel CSME
FW, are authenticated using a key stored in hardware, and this
authentication is performed regardless if the OEM KM is present or
not.

Signed Components and Their Structure

The platform OEM may choose to replace certain FW components,
such as the Intel ISH or ACE components, to replace or extend
capabilities provided by Intel. Those FW components should be re-
signed with the OEM key. In addition, there may be OEM-signed
binaries that use the signing chain-of-trust to enable capabilities
such as debug tokens that are used to enable features for
debugging platform hardware and FW.

Each item that is signed begins with the same structure, a binary,
and in the signing flow a manifest is added to the binary. The
manifest is then signed, and the signature and public key are
entered into the header of the manifest to create the final signed
component binary.

Regardless of the type of binary being signed, all signed
components have the same final structure of original binary and
manifest, where the public key and signature are part of the
manifest header. See Figure 4.

Figure 4: Steps to Sign Binary Images

Key Security

Intel recommends using separate key pairs for signing each
component. Using a single key for signing multiple components is
not an advised security practice, since if the key is compromised,
the entire package may be compromised.

Private production keys should always be stored securely and kept
secret to provide a robust secure boot flow and firmware load. If
the private keys are exposed, they may be used to create and sign
unofficial versions of the binaries which can then be loaded onto
the platform to compromise platform security.

It is important to restrict/audit access to the keys needed to re-sign
components and build updated images for the platform.

For example, the tool for signing and encrypting components could
be run on a secure server which houses the keys, or the signing
tool could sign modules by exporting components to a production
signing server. An example of this is shown in the Secure Server
Signing section.

 As a best practice, OEMs should manage at least two separate sets
of keys: one set for development signing of images and one set for
production signing of images.

Building the IFWI

Intel provides signed components in the kit released to OEMs as
well as tools for building and configuring an IFWI. OEMs may add
additional components to the IFWI. The image creation tool will
complete the signing using the appropriate keys and include those
components in the final image for flashing onto the system.

Figure 5: Building Production IFWI

IP Loading

Boot Flow Order

The signing of components is used during authentication of
components during boot time. The boot flow order and
establishment of root of trust proceeds according to the following
steps:

1. Using the Intel public key hash stored in ROM hardware,
Registration-Based Encryption (RBE) and Root of Trust Key
Manifest (ROT KM) are authenticated. (ROT KM holds the public
key hashes for the Intel-signed components.)

2. Once RBE and ROT KM are authenticated, public key hashes in
ROT KM are used to authenticate Intel components; each key
authenticates its corresponding component.

3. If an OEM KM is present, RBE will authenticate the OEM KM using
the OEM public key hash in the OEM FPF.

4. Once OEM KM is authenticated, the keys inside it are used to
authenticate OEM components included in the OEM KM list. If a
component can be signed by OEM but is not, RBE authenticates
the Intel components against the keys in ROT KM.

5. Lastly, if present, the components or capabilities that can only be
signed by the OEM, are authenticated against the keys in the
OEM KM.

Figure 6: Boot Flow and Root of Trust Establishment Order

OEM KM Precedence

Table 15: OEM KM Components and Precedence

FW
Component

ROT
KM

OEM
KM

Precedence
Intel CSME Authentication Behavior during FW
Loading

ME BUP

Y N ROT KM Authenticate using key in ROT KM, if no key or
authentication fails, fail to boot.

ME Main Y N

PMC Y N

PCHC Y N

TCSS Y N

ISH BUP Y N

Audio (cAVS)
Image #1

Y N Authenticate using key in ROT KM, if no key or
authentication fails, fail to load component.

ISH Main FW Y Y OEM KM then
ROT KM

If usage is present in OEM KM, authenticate using
key in OEM KM. If authenticate fails, fail to load
component and exit flow.

If usage is not present in OEM KM, authenticate
using the key in ROT KM. If no key or
authentication fails, fail to load component.

iUnit Boot
Loader

Y Y

iUnit Main FW Y Y

Audio (cAVS)
Image #0

N Y OEM KM Only If key usage marked for component in OEM KM,
authenticate using key in OEM KM, if authenticate
fails, fail to load component & exit flow.

OS Boot
Loader

N Y

OS Kernel N Y

OEM Debug
Tokens

N Y

During the authentication process, the Intel CSME engine first
checks the OEM KM to see if the desired component is listed. If the
component is listed in the OEM KM, the associated key hash will be
used for authenticating the component and determining whether it
should load.

If the component is not listed by the OEM as a desired usage in the
OEM KM, the Intel CSME engine will look up the key hash in the
ROT KM and will attempt to authenticate the component to
determine whether to load the component.

If a public key hash is present in OEM KM, yet it fails to
authenticate, Intel CSME will not try to authenticate the
corresponding Intel components based on ROT KM.

Table 13 shows the components that can be listed in the KM, as
well as their precedence when they are listed.

Signature Authentication During Boot

Every component in the boot flow, whether provided by Intel or the
OEM, goes through the same authentication flow to verify the
signature of that component. No matter what the component is,
whether it is RBE, a key manifest, or a component such as ISH, the
concept is the same.

When the platform boots, all that is known to be secure are the
public key hashes in the HW (Intel’s public key hashes in ROM and
the OEM’s public key hash in the OEM FPF). Every step of the way
starts with a public key hash that has been authenticated to be
secure, and a component which needs to be authenticated.

The component to be authenticated contains the original binary
attached to a manifest, which contains the public key and RSA
signature of that component.

The following three steps are used to authenticate any binary to be
loaded during boot flow:

1. Verify Public Key. The public key found in the manifest header is
hashed and compared with the already-verified public key hash
used to authenticate the component. For example:

1. Public key in RBE and ROT KM manifest header will be
hashed and compared with the public key hash in ROM.

2. Public key in OEM KM manifest will be hashed and
compared with public key hash in OEM FPF.

3. Public key in OEM ISH will be hashed and compared with
public key hash for ISH in OEM KM when present there. If it
is not present there, the Intel ISH public key in the manifest
will be hashed and compared with public key hash for ISH in
ROT KM.

2. Use Public Key to Verify Signature. Once the public key in the
manifest is verified, it is used to decrypt the signature. This
produces a hash of the manifest section without the public key
and signature. The manifest in the binary is hashed and
compared to the decrypted signature output. If these hashes of
the manifest are equal, then the manifest has been
authenticated.

3. Use Verified Manifest to Verify FW. Once the manifest has been
verified, anything within it can be trusted, including the hash of
the original FW binary. The original FW is hashed and compared
with the hash of the FW in the manifest to authenticate the FW.
If the hashes are equal, the component is fully authenticated and
can be loaded or used to authenticate the next step in the chain.

Figure 7: Steps to Authenticate Binaries during Boot

Intel Platform Firmware Resilience (Intel® PFR)

Intel® Platform Firmware Resilience (Intel® PFR) is a hardware-
based solution (based on the Intel® MAX® 10 FPGA) that helps
protect the various platform firmware components. Intel is
contributing this capability as an available option on our 3rd-

Generation Intel® Xeon® Processor Platforms for those looking for
an integrated solution that may not otherwise be available from
their platform vendor of choice.

Intel® PFR monitors and filters malicious traffic on the system
buses. It also verifies the integrity of platform firmware images
before any firmware code is executed. And most significantly, Intel
PFR can even automatically restore corrupted firmware from a
protected, known-good recovery image. Data center owners now
have additional options to help protect against permanent denial of
service firmware attacks with Intel® Platform Firmware Resilience.

Additional detail may be found at the following links:

 Intel® Platform Firmware Resilience (Intel® PFR)
 Platform Firmware Resiliency GitHub*
 NIST Platform Firmware Resilience Guidelines

Intel® Boot Guard

Intel® Boot Guard (BtG) is a CPU hardware-based root of trust
designed to ensure the proper BIOS is used to boot the platform. It
does this by executing an Intel-provided authenticated code module
(ACM) that runs before BIOS and cryptographically verifies the
initial boot block (IBB) of the BIOS before handing control to it. In
the case where the IBB fails to verify, Intel Boot Guard prevents the
platform from booting to avoid control by a potentially malicious
BIOS. Intel Boot Guard is known as a verified boot technology and
when implemented helps ensure platform integrity.

The boot profile is one aspect of the boot policy and is used to
determine the actions that are taken by the startup-ACM (S-ACM,
also known as BIOS ACM). Generally, this involves having the OEM
decide whether to have an Intel Boot Guard enforcement profile
implemented on the system or not, and whether to perform just a
verified boot or both a verified and measured boot in the case
where Intel Boot Guard is enabled. The boot profile is also used to
determine whether the platform supports Intel® Trusted Execution
Technology (Intel® TXT) or not.

Intel Boot Guard uses processor and chipset hardware to
authenticate system BIOS. Intel Boot Guard is intended to prevent
reprogramming attacks and physical attacks against the SPI Flash.

Boot

The OEM sets Intel Boot Guard policies, and the OEM generates a
private/public key pair that is used to sign the Initial Boot Block
(IBB). The hash of that public key is added to the OEM KM prior to
signing the OEM KM. Note that the OEM Boot Guard key is
generated and managed by each OEM, and it is up to the OEM to
determine what keys are used in any platform.

Upon boot, the processor launches an Intel-signed Authenticated
Code Module (ACM), which loads the BIOS initial boot block (IBB)
into the processor cache and authenticates it. The OEM KM is
verified using the included public key to verify the OEM KM was
signed using the OEM KM private key, and that private key is
verified to be authentic by comparing it with the hash stored in the
FPF HW. By then comparing the Initial Boot Block (IBB) Boot Guard
signing key with the hash in the OEM KM and verifying the
signature of the IBB, the integrity of the IBB is verified. Once
verified, the boot process continues, and subsequent boot
components can be verified.

Policies

Policies are under the control of the OEM BIOS developer to
request a certain level of platform protection. Policies are
provisioned at manufacturing time, and enforce actions of
participating platform components, such as: CPU microcode, Intel
CSME, ACM, and BIOS to enable the requested security level.

Intel Boot Guard policies fall into two categories:

 Unalterable (immutable)
 Mutable

Unalterable Policies

Unalterable policies used by the Boot Guard component exist as
groups of FPFs which are programmed by OEMs during the
manufacturing process. Each FPF group clusters related policies
together and can be viewed as HW registers. Initially, during
development, these policies may reside in CSE internal non-volatile
(NV) variables and are committed into FPFs at the End of
Manufacturing (EOM) process. Unalterable policies are not directly
accessible by BIOS, but that information is made available by S-
ACM via the ACM_POLICY_STATUS register and BTG_SACM_INFO
MSR. One exception to the unalterable policy items is the Security
Version Numbers (SVN), which is stored in the FPF; however, the
SVN may be incremented by the S-ACM under control of the OEM
policy.

The most notable policy groups are boot policy restrictions
(BP.RSTR), boot policy key (BP.KEY), boot policy type (BP.TYPE),
and boot policy key type (BP.KEYTYPE).

Mutable Policies

Mutable policies used by Boot Guard are in the Boot Policy Manifest
(BPM). The BPM is one of the chained structures allowing mutable
policies to be anchored to a given platform in a secure manner.

Initial Boot Block (IBB) Data Description

The IBB consists of the BOOT_POLICY_MANIFEST_HEADER, the
IBB_ELEMENT, and the
BOOT_POLICY_MANIFEST_SIGNATURE_ELEMENT. The region
from the beginning of the IBB up to, but not including the
KeySignature field of the Signature element is included in the
signature.

Table 16: BOOT_POLICY_MAINIFEST_HEADER

Field
Size
(Bytes)

Description

StructureID 8 ‘__ACBP__’

StructVersion 1 10h

Table 16: BOOT_POLICY_MAINIFEST_HEADER

Field
Size
(Bytes)

Description

HdrStructVersion 1 01h

PMBPMVersion 1 This is the Platform Manufacturer’s version number.

BPSVN 1 Bits 7:4 – Reserved, must be zero
Bits 3:0 – Boot Policy Revocation Value

ACMSVN_Auth 1 Bits 7:4 – Reserved, must be zero
Bits 3:0 – Boot Policy Revocation Value

Reserved 1 Must be 0

NEMDataStack 2 Size of data region need by IBB In 4K pages. E.g., value of 1 =
4096 bytes 2 = 8092 bytes, etc.
Must not be zero

Field
Size
(Bytes)

Description

StructureID 8 ‘__ACBP__’

StructVersion 1 21h, 23h, 24h

HdrStructVersion 1 20h

HdrSize 2 Total number of bytes in Header (i.e., offset to first element)

KeySignatureOffset 2 Offset from start of Bpm to KeySignature field of Signature
Element

BpmRevision 1 This is the Platform Manufacturer’s version number.

BpmRevocation 1 Bits 7:4 – Reserved, must be zero
Bits 3:0 – Boot Policy Revocation Value

AcmRevocation 1 Bits 7:4 – Reserved, must be zero
Bits 3:0 – ACM Revocation Value

Reserved 1 Must be 0

NemPages 2 Size of data region need by IBB In 4K pages. E.g., value of 1
= 4096 bytes 2 = 8092 bytes, etc. Must not be zero

Table 17: IBB_ELEMENT

Field Size (Bytes) Description
StructureId 8 ‘__IBBS__’

StructVersion 1 10h

Reserved 1 0h

Reserved 1 0h

PbetValue 1 Protect BIOS Environment Timer (PBET)
value. Upper 4 bits must be 0. Lower 4 bits
contain timer setting.

Flags 4 Control flags

BAR 0 / IbbMchBar 8 Optional first base BAR holding set of
configuration registers used to enable DMA
protection

BAR 1 / VtdBar 8 Optional second base BAR holding set of
configuration registers used to enable DMA
protection

DmaProtBase0 4 Low DMA protected range base

DmaProtLimit0 4 Low DMA protected range limit

Reserved 8 0h

Reserved 8 0h

PostIbbHash Size of (SHA_HASH
_STRUCTURE)

Optional hash (depreciated). Set to
TPM_ALG_NULL and 0 size.

IbbEntryPoint 4 IBB (Startup BIOS) entry point

Digest Size of (SHA_HASH
_STRUCTURE)

Digest of all Hashed IBB Segments

SegmentCount 1 Number of IBB Segments (Hashed and
Non-Hashed)

IbbSegment[SegmentCount] SegmentCount * Size of
(IBB_SEGMENT)

Array of IBB Segments (Hashed and Non-
Hashed)

Field Size (Bytes) Description
StructureId 8 ‘__IBBS__’

StructVersion 1 20h

Reserved0 1 Must be 0

ElementSize 2 Total number of bytes in the element

Reserved1 1 Must be 0

SetType 1

Reserved 1

PbetValue 1 Protect BIOS Environment Timer (PBET)
value. Upper 4 bits must be 0. Lower 4 bits
contain timer setting.

Flags 4 Control flags

BAR 0 / IbbMchBar 8 Optional first base BAR holding set of
configuration registers used to enable DMA
protection

BAR 1 / VtdBar 8 Optional second base BAR holding set of
configuration registers used to enable DMA
protection

DmaProtBase0 4 Low DMA protected range base

DmaProtLimit0 4 Low DMA protected range limit

DmaProtBase1 8 High DMA protected range base

DmaProtLimit1 8 High DMA protected range limit

PostIbbHash Size of (SHA_HASH
_STRUCTURE)

Optional hash (depreciated). Set to
TPM_ALG_NULL and 0 size.

IbbEntryPoint 4 IBB (Startup BIOS) entry point

ObbHash Size of (HASH_LIST) List of digests of all Hashed IBB Segments

Reserved 3

SegmentCount 1 Number of IBB Segments (Hashed and
Non-Hashed)

IbbSegment[SegmentCount] SegmentCount * Size of
(IBB_SEGMENT)

Array of IBB Segments (Hashed and Non-
Hashed)

Table 18: HASH_LIST

Field Size (Bytes) Description
Size 2 Number of bytes in HASH_LIST structure

Count 2 Number of Digest elements

Digest Count * Size of (HASH_STRUCTURE) Array of HASH_STRUCTURE digest descriptions

Table 19: IBB_SEGMENT

Field Size (Bytes) Description
Reserved 2 00h

Flags 2 Flags indicating the IBB Segment type
(0h = hashed, 1h = non-hashed)

Base 4 Physical address of an IBB segment.
 Must be 64 bytes aligned

Size 4 Size of the IBB segment in bytes (64-byte aligned)

Table 20: BOOT_POLICY_MANIFEST_SIGNATURE_ELEMENT

Field Size (Bytes) Description
StructureId 8 ‘__PMSG__’

StructVersion 1 10h, 20h

Reserved 3 Must be 0

KeySignature Size of (KEY_AND_SIGNATURE _STRUCT)

Intel Boot Guard Policy Example

Using the example IFWI shown in the IFWI Boot Trust
Flow section, the Boot Policy Manifest can be located by looking up
the FIT type 0ch record address of 0FFFF7e00h. Remember, the
structure can be identified with the Structure ID string of
__ACBP__. Note that just as above, the format of the structure

may change over time. To identify the specific structure format, use
the Structure ID and the Structure Version information to properly
match the structure format.

In the following example, the Structure Version is 10h. In
comparing Boot Policy Manifest structures above, we can identify
one key hash (shown highlighted in yellow, below) and the public
key (shown highlighted in green below). The signature block for
verifying the integrity of the Boot Policy Manifest follows the public
key.

ffff7e00: 5f5f 4143 4250 5f5f 1001 1000 0000
4000 __ACBP__......@.
ffff7e10: 5f5f 4942 4253 5f5f 1000 000f 0000
0000 __IBBS__........
ffff7e20: 0000 d1fe 0000 0000 0000 d9fe 0000
0000
ffff7e30: 0000 1000 0000 f000 0000 0000 0100
0000
ffff7e40: 0000 0000 0f00 0000 0000 0000 0000
0000
ffff7e50: 0000 0000 0000 0000 0000 0000 0000
0000
ffff7e60: 0000 0000 0000 0000 0000 0000 f0ff
ffff
ffff7e70: 0b00 2000 43e0 caa1 9dda c359 645c
7409 .. .C......Yd\t.
ffff7e80: f9b5 ab93 59c3 9634 8bd2 ab09 0351
f931 Y..4.....Q.1
ffff7e90: 92b3 25e4 0500 0000 0000 00ce ff00
0003 ..%.............
ffff7ea0: 0000 0000 0000 00de ff00 800e 0000
0000
ffff7eb0: 0000 00ed ff00 0011 0000 0000 0000
00fe
ffff7ec0: ff00 7901 0000 0000 0000 84ff ff00
7c00 ..y...........|.
ffff7ed0: 005f 5f50 4d53 475f 5f10 1001 0010
0008 .__PMSG__.......
ffff7ee0: 0100 0100 1315 8420 e2d1 fb84 7e49

a799 ~I..
ffff7ef0: 4df9 57ef dfcc 975b 8238 aa21 91e9
8c24 M.W....[.8.!...$
ffff7f00: 620d b163 b9d3 4ba8 f1e9 6b40 8ec8
1732 b..c..K...k@...2
ffff7f10: 9132 4c25 ade3 8a3f 2c77 081e 4f19
5501 .2L%...?,w..O.U.
ffff7f20: 12fb 5c90 55e2 e576 42ec c041 1fe7
ec96 ..\.U..vB..A....
ffff7f30: 5f1e ab8f 9c24 d626 90a8 4e3a 51e5
1493 _....$.&..N:Q...
ffff7f40: 1c86 049b 6574 438d 997c 7950 3136
e997 etC..|yP16..
ffff7f50: 9192 c66b a8aa 4f7d b77a 760f ba35
2174 ...k..O}.zv..5!t
ffff7f60: b604 8bf5 a082 0c0b 3087 e32f 75d7
2ef2 0../u...
ffff7f70: 7ddc 70e8 b280 7d39 f1c4 9140 ec12
5e7a }.p...}9...@..^z
ffff7f80: 445c c722 c780 9e56 3f99 0935 ce33
f8e4 D\."...V?..5.3..
ffff7f90: b25c 4433 fdd7 3d31 ec21 36fd 1206
f196 .\D3..=1.!6.....
ffff7fa0: 78cb cea8 b64c 58c2 b7a8 ddea 5dae
e54a x....LX.....]..J
ffff7fb0: 289b 5f6c 8ab8 f869 8d97 7a24 1cbf
74c5 (._l...i..z$..t.
ffff7fc0: b102 ea0e 650b d0d5 405f 6bdc 9bcf
ec40 e...@_k....@
ffff7fd0: d1dd 6af2 c729 4eb8 80a1 6bcf 8e3b
1c28 ..j..)N...k..;.(
ffff7fe0: 4069 e0e4 1400 1000 080b 006f 100d
b515 @i.........o....
ffff7ff0: 67e9 2b64 1a2c b357 0e5f 1775 d871
45ff g.+d.,.W._.u.qE.
ffff8000: 7ff9 7829 38bd 6c06 1193 67f8 e2d9
489c ..x)8.l...g...H.
ffff8010: f946 369e 4923 3449 a0be 0825 2bbf
d5ec .F6.I#4I...%+...
ffff8020: 4b2f 5106 09aa 133d b5ba 0aee 23e7
a4a1 K/Q....=....#...

ffff8030: 902b d13a 10c0 403d b1f4 6d47 b34a
3535 .+.:..@=..mG.J55
ffff8040: e86d c8a6 6ae8 5f94 d13e b488 da52
bad1 .m..j._..>...R..
ffff8050: 8c0f dd42 afd9 013b ac28 10ee c524
582f ...B...;.(...$X/
ffff8060: 5ef6 3134 700b db29 02a7 3819 dd1c
48a2 ^.14p..)..8...H.
ffff8070: 8539 20cc b1a9 f307 b3a9 2b66 f220
a5f2 .9+f. ..
ffff8080: 61b5 bd7f 65b9 4b0e 3ecf 7603 bfce
1423 a...e.K.>.v....#
ffff8090: 4f92 562a 43ee 2cac d78d 7dc2 c356
235d O.V*C.,...}..V#]
ffff80a0: facb 686a fd27 78d4 83fc f19d aa30
3b0f ..hj.'x......0;.
ffff80b0: fdc4 6f6a 1fc3 ee10 46f0 2ac7 5597
bc4b ..oj....F.*.U..K
ffff80c0: e5cb 2d72 36b6 2de6 fe64 aa98 7b0e
05f9 ..-r6.-..d..{...
ffff80d0: 8a16 7218 96b7 b3a1 1b6b f522 1884
f1cc ..r......k."....
ffff80e0: fa42 290d 23dd 08bb 7daa
fe .B).#...}..

Additionally, to demonstrate the trust linkage between the OEM KM
and the Boot Policy Manifest, calculating the SHA256 hash value of
the Boot Policy Manifest public key modulus (shown highlighted
in bold italic above) results in the hash value that appears in the
OEM Key Manifest (shown highlighted in italic below). So,
assuming the OEM Key Manifest integrity is intact, and the
signature of the Boot Policy Manifest is verified correct, then the
continuation of trust now extends to the Boot Policy Manifest since
the valid signature would require knowledge of the private keys
used to sign the OEM KM and the Boot Policy Manifest.

ffff7900: 5f5f 4b45 594d 5f5f 1010 0001 0b00
2000 __KEYM__...... .
ffff7910: d550 2ff0 6169 9f9e 2b7c 64ab 4137
4f56 .P/.ai..+|d.A7OV

ffff7920: ae6f 45db 870d dba4 733d dc30 3238
78bb .oE.....s=.028x.

Taking a closer look at the IBB structure, we see another SHA256
hash value which, in this case, is a digest of the total IBB
segments. The next byte, 05h (shown in superscript below) is the
SegmentCount. The SegmentCount indicates the IBB consists of 5
segments, and since all have Flags values of 0, all 5 segments are
included in the hash calculation. The Base address (shown in bold
italic below) and Size of the segments (shown in bold below) are
shown below. When hashing the 5 segments, the resulting value is
the hash shown highlighted in yellow below.

ffff7e10: 5f5f 4942 4253 5f5f 1000 000f 0000
0000 __IBBS__........
ffff7e20: 0000 d1fe 0000 0000 0000 d9fe 0000
0000
ffff7e30: 0000 1000 0000 f000 0000 0000 0100
0000
ffff7e40: 0000 0000 0f00 0000 0000 0000 0000
0000
ffff7e50: 0000 0000 0000 0000 0000 0000 0000
0000
ffff7e60: 0000 0000 0000 0000 0000 0000 f0ff
ffff
ffff7e70: 0b00 2000 43e0 caa1 9dda c359 645c
7409 .. .C......Yd\t.
ffff7e80: f9b5 ab93 59c3 9634 8bd2 ab09 0351
f931 Y..4.....Q.1
ffff7e90: 92b3 25e4 0500 0000 0000 00ce ff00
0003 ..%.............
ffff7ea0: 0000 0000 0000 00de ff00 800e 0000
0000
ffff7eb0: 0000 00ed ff00 0011 0000 0000 0000
00fe
ffff7ec0: ff00 7901 0000 0000 0000 84ff ff00
7c00 ..y...........|.
ffff7ed0: 005f 5f50 4d53 475f 5f10 1001 0010

0008 .__PMSG__.......

Table of five IBB segments:

Flags: 0000h, Address: FFCE0000h, Size: 00030000h
Flags: 0000h, Address: FFDE0000h, Size: 000E8000h
Flags: 0000h, Address: FFED0000h, Size: 00110000h
Flags: 0000h, Address: FFFE0000h, Size: 00017900h
Flags: 0000h, Address: FFFF8400h, Size: 00007C00h

Initial Boot Block (IBB) is the first piece of BIOS code executed
after the Boot Guard ACM has successfully returned control to BIOS
at IBBEntryPoint. IBB is responsible for maintaining the Boot
Policies, including the Boot Policy Types (that is, Measured Boot,
Verified Boot, or both.) IBB has two types: Hashed IBB Segment
and Non-Hashed IBB Segment (optional.) Boot Guard ACM will only
verify/measure the Hashed IBB Segment(s).

The IBB as a whole is responsible for transferring the contents of
next stages of the boot (that is, the Next Boot Block) from the flash
into memory. To utilize the hardware root of trust for verification
provided by Intel Boot Guard, the platform must continue the chain
of trust. IBB is also responsible for maintaining the direct memory
access (DMA) protections, if required by platform. Essentially, the
IBB should verify and/or measure the Next Boot Block it placed into
memory before transferring control to it.

To maintain the Chain of Trust from the Intel Boot Guard hardware-
based root of trust through the rest of BIOS code execution, BIOS
is required to verify any new block of code prior to executing it.
This means that any time BIOS execution moves from one
Firmware Volume (FV) to another that has not yet been executed,
BIOS is required to verify that new FV comes from within the
currently authenticated chain of trust before executing the FV. This
is described in more detail within the UEFI Platform Initialization
Specification, Volume 3.

After UEFI has completed configuration of the system and setup to
enable loading of an operating system, Secure Boot can be used to
continue the chain of trust to booting of the OS.

Secure Server Signing

The purpose of this section is to show an example of how OEMs
can perform production signing without requiring the signing utility
(MEU) to run on the signing server. End customers/ODMs/system
integrators are also able to re-sign third-party images without
sharing their private keys. OEMs may use MEU to initially debug
sign or sign using a placeholder first, and then export the given
manifest to a signing server for OEM proprietary signing.

Intel does not support external production server signing.

Production High Level Signing

The secure server is used to insert a production signature and
public key hash into the manifest, which can then be imported
using MEU to the original binary, thus creating the production
signed component.

Figure 8: Signing on an OEM Secure Server

Signing on an OEM Secure Server

This section assumes a configuration where the private keys are
stored on a secure server and the build is completed on a non-
secure server. The secure server has access to the private keys
using a Hardware Security Module (HSM), as an example, but does

not share the private keys. A non-secure server (for example, build
server) builds the image and does not have access to the private
keys.

The following steps would be performed to complete the signing
process.

Steps Performed Outside the Secure Server

1. Create an IP FW binary signed with a placeholder key. This
placeholder key is a local temporary key in the non-secure server.

2. Export the manifest section of the binary.
3. Parse the IP manifest header and remove the crypto block from

the manifest binary. This is done based on fixed offsets or
parsing of the binary with a hex editor. No other fields in the
manifest should be changed.

4. Send the manifest binary (without crypto block) to the secure
server.

Steps Performed on the Secure Server

5. Generate the production private and public key pairs.
6. Calculate the signature for the manifest binary (without the
crypto blocks).
7. Use a tool, such as OpenSSL, to extract the public key modulus
and exponent values.
8. Add new crypto block to the manifest binary, filling in the
appropriate data.
9. Send the manifest binary with the updated crypto block to
non-secure server.

Steps Performed Outside the Secure Server

10. Generate the production public key hash using MEU tool.
11. Use MEU to import the updated manifest binary to the
appropriate FW binary.

Protection of Private Keys

This document presented a high-level view of how private/public
keys pairs are used in the Integrated Firmware Image (IFWI). The

private keys and cryptographic functions used in hash and
signature functions provides a Chain of Trust (CoT) to block
updates and detect modifications made to the IFWI by anyone
other than the Original Equipment Manufacturer (OEM) or Original
Design Manufacturer (ODM). The CoT begins in hardware (HW) and
when properly enabled and configured, can ensure firmware (FW)
integrity is maintained. Also, the use of multiple keys in the CoT
can help to reduce the need to access the OEM KM private key and
reduce the overall exposure of any other key in the CoT, if one of
those keys becomes known.

However, if a private key becomes known, an unauthorized user
may be able to use the key to sign FW code or data structures, and
thus may be able to bypass FW protections or to allow modification
of FW that could allow malicious software to gain control of the
platform. The specific impact of the key exposure will depend on
the usage for the exposed private key.

In many cases, if a private key does become known, such as if the
OEM Boot Guard key were exposed, the OEM can consider
releasing a BIOS update that replaces the exposed key with a new
key, re-sign the appropriate structures, and update the appropriate
hash values to reestablish the CoT.

It should be noted, however, that if the exposed key is the private
key used to sign the OEM Key Manifest (OEM KM), then unless the
HW provides a method to disable the exposed key and enable a
second key, platforms from that OEM that use the key that was
exposed are potentially vulnerable to firmware modification and are
not able to reestablish the CoT. It is therefore highly recommended
that industry best practices be applied to ensure, at minimum, the
OEM KM is properly protected from unauthorized access, such as
storing private keys in a Hardware Security Module (HSM) and
implementing a signing server as explained in the Secure Server
Signing section.

Recent ransomware attacks on some OEMs have involved BIOS
source code and build environments being taken that also included
one or more private keys for those platforms. To reduce the

chances of such exposure, private keys should never be stored with
the BIOS source code.

Development and Test Keys

Sometimes, in the development phase for a platform, pre-
production test keys may be provided to the OEM to simplify the
explanation and demonstration of the process of building an IFWI.
Those keys allow the OEM to walk through a demonstration of how
the build process works and provide examples of when the process
is working correctly. However, when preparing for production, if the
OEM fails to generate their own keys to replace these test keys,
those OEMs platforms may be exposed to unauthorized FW
modification.

Since these development demonstrations are routinely provided to
many OEM, ODM, and BIOS vendors for educational purposes,
these same keys are available to many people. Also, since these
keys are known to be test keys, these keys are not intended to be
used in production environments. Therefore, if an OEM/ODM uses a
test key in a production platform, the OEM/ODM should be aware
that it is using a key that is widely distributed and could be easily
discovered.

Firmware Scanning

To inform users of platforms that are potentially vulnerable to
firmware modification due to OEMs/ODMs using known keys, some
firmware utilities are adding a function that scans system IFWI and
FW components looking for the presence of known private keys.
These known private key lists are being assembled from
preproduction test private keys as well as private keys that are
claimed to have been found in various leaks that were posted
online. These lists are not created or maintained by Intel, and Intel
makes no representations about the accuracy or completeness of
these lists.

It should be noted that if a key is detected in an IFWI image or FW
update in which that private key is known, the use of that key must
be identified to determine if the platform is vulnerable to FW

modification. Additionally, there are FW protection technologies that
provide “defense-in-depth” through overlapping technologies, such
as Intel Platform Firmware Resiliency (Intel PFR) in combination
with Intel Boot Guard. In this case of overlapping technologies, the
use of a known private key in the FW is blocked from signing FW
changes due to Intel PFR protections.

Intel recommends OEMs and ODMs check for known private keys
and replace or remove them in their images where possible.

References

 Intel® Converged Security and management Engine (Intel®
CSME) Security

 Intel® Platform Firmware Resilience (Intel® PFR)
 Intel PFR Github*
 Secure the Network Infrastructure – Secure Boot Methodologies
 TPM 2.0 Library
 chipsec Github
 fwupd Github

