Arduino打造USB蓝牙键盘转接器

本文介绍如何使用 Arduino 打造一个设备,能够将你的USB键盘转化为蓝牙键盘。

键盘可以算作PC上最古老的设备了,他的出现使得人类可以用非常简单的方法与电脑进行交互。同样的,由于各种历史原因,键盘也是PC上最复杂,兼容性问题最多的设备之一(类似的还有硬盘,不过从IDE到SATA的进化过程中,标准明确,兼容性问题少多了)。

网上流传着一篇DIY USB键盘转换为无线的文章,非常不幸的是,那篇文章是错误的,很明显的错误是作者认为键盘是单向传输,而实际上传输是双向的。比如,USB每次通讯都需要HOST和SLAVE的参与,即便是PS2键盘的通讯也同样如此。此外,大小写键之类切换是主机端进行控制的。

硬件部分Arduino UNO , USB Host Shield 和 HID 蓝牙芯片。强调一下这里使用的是 HID 蓝牙芯片,并非普通的蓝牙串口透传芯片【特别注意是“蓝牙键盘芯片”也不是“蓝牙条码模块”】。关于这个模块可以参考我在【参考1】中的实验。
硬件连接很简单,USB HOST Shield插在 Arduino上,然后VCC/GND/TX/RX将Arduino 和 HID蓝牙模块连接在一起。
image002

原理:首先,为了通用性和编程简单,我们用USB HOST发送命令把键盘切换到 Boot Protocol 模式下。这样即使不同的键盘,每次发出来的数据也都是统一的格式。然后,我们直接读取缓冲数据就可以解析出按键信息了。最后,将取下来的按键信息(Scan Code)按照HID蓝牙模块的格式要求通过串口送到模块上,主机端就收到了。

上述连接就可以正常工作了,但是为了美观和提高可靠性,我找到之前买的一个面包板Shield。
image004

插好之后就是这样

image006

具体代码:

/* MAX3421E USB Host controller LCD/keyboard demonstration */
//#include <Spi.h>
#include "Max3421e.h"
#include "Usb.h"

/* keyboard data taken from configuration descriptor */
#define KBD_ADDR        1
#define KBD_EP          1
#define KBD_IF          0
#define EP_MAXPKTSIZE   8
#define EP_POLL         0x0a
/**/
//******************************************************************************
//  macros to identify special charaters(other than Digits and Alphabets)
//******************************************************************************
#define BANG        (0x1E)
#define AT          (0x1F)
#define POUND       (0x20)
#define DOLLAR      (0x21)
#define PERCENT     (0x22)
#define CAP         (0x23)
#define AND         (0x24)
#define STAR        (0x25)
#define OPENBKT     (0x26)
#define CLOSEBKT    (0x27)

#define RETURN      (0x28)
#define ESCAPE      (0x29)
#define BACKSPACE   (0x2A)
#define TAB         (0x2B)
#define SPACE       (0x2C)
#define HYPHEN      (0x2D)
#define EQUAL       (0x2E)
#define SQBKTOPEN   (0x2F)
#define SQBKTCLOSE  (0x30)
#define BACKSLASH   (0x31)
#define SEMICOLON   (0x33)
#define INVCOMMA    (0x34)
#define TILDE       (0x35)
#define COMMA       (0x36)
#define PERIOD      (0x37)
#define FRONTSLASH  (0x38)
#define DELETE      (0x4c)
/**/
/* Modifier masks. One for both modifiers */
#define SHIFT       0x22
#define CTRL        0x11
#define ALT         0x44
#define GUI         0x88
/**/
/* "Sticky keys */
#define CAPSLOCK    (0x39)
#define NUMLOCK     (0x53)
#define SCROLLLOCK  (0x47)
/* Sticky keys output report bitmasks */
#define bmNUMLOCK       0x01
#define bmCAPSLOCK      0x02
#define bmSCROLLLOCK    0x04
/**/
EP_RECORD ep_record[ 2 ];  //endpoint record structure for the keyboard

char buf[ 8 ] = { 0 };      //keyboard buffer
char old_buf[ 8 ] = { 0 };  //last poll
/* Sticky key state */
bool numLock = false;
bool capsLock = false;
bool scrollLock = false;
bool line = false;

void setup();
void loop();

MAX3421E Max;
USB Usb;

void setup() {
  Serial.begin( 9600 );
  Serial.println("Start");
  Max.powerOn();
  delay( 200 );
}

void loop() {
    Max.Task();
    Usb.Task();
    if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING ) {  //wait for addressing state
        kbd_init();
        Usb.setUsbTaskState( USB_STATE_RUNNING );
    }
    if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) {  //poll the keyboard  
        kbd_poll();
    }
}
/* Initialize keyboard */
void kbd_init( void )
{
 byte rcode = 0;  //return code
/**/
    /* Initialize data structures */
    ep_record[ 0 ] = *( Usb.getDevTableEntry( 0,0 ));  //copy endpoint 0 parameters
    ep_record[ 1 ].MaxPktSize = EP_MAXPKTSIZE;
    ep_record[ 1 ].Interval  = EP_POLL;
    ep_record[ 1 ].sndToggle = bmSNDTOG0;
    ep_record[ 1 ].rcvToggle = bmRCVTOG0;
    Usb.setDevTableEntry( 1, ep_record );              //plug kbd.endpoint parameters to devtable
    /* Configure device */
    rcode = Usb.setConf( KBD_ADDR, 0, 1 );                    
    if( rcode ) {
        Serial.print("Error attempting to configure keyboard. Return code :");
        Serial.println( rcode, HEX );
        while(1);  //stop
    }
    /* Set boot protocol */
    rcode = Usb.setProto( KBD_ADDR, 0, 0, 0 );
    if( rcode ) {
        Serial.print("Error attempting to configure boot protocol. Return code :");
        Serial.println( rcode, HEX );
        while( 1 );  //stop
    }
    delay(2000);
    Serial.println("Keyboard initialized");
}

/* Poll keyboard and print result */
/* buffer starts at position 2, 0 is modifier key state and 1 is irrelevant */
void kbd_poll( void )
{
 char i;
 boolean samemark=true;
 static char leds = 0;
 byte rcode = 0;     //return code
    /* poll keyboard */
    rcode = Usb.inTransfer( KBD_ADDR, KBD_EP, 8, buf );
    if( rcode != 0 ) {
        return;
    }//if ( rcode..

    for( i = 2; i < 8; i++ ) {
     if( buf[ i ] == 0 ) {  //end of non-empty space
        break;
     }
      if( buf_compare( buf[ i ] ) == false ) {   //if new key
        switch( buf[ i ] ) {
          case CAPSLOCK:
            capsLock =! capsLock;
            leds = ( capsLock ) ? leds |= bmCAPSLOCK : leds &= ~bmCAPSLOCK;       // set or clear bit 1 of LED report byte
            break;
          case NUMLOCK:
            numLock =! numLock;
            leds = ( numLock ) ? leds |= bmNUMLOCK : leds &= ~bmNUMLOCK;           // set or clear bit 0 of LED report byte
            break;
          case SCROLLLOCK:
            scrollLock =! scrollLock;
            leds = ( scrollLock ) ? leds |= bmSCROLLLOCK : leds &= ~bmSCROLLLOCK;   // set or clear bit 2 of LED report byte

          Serial.write(0x0c);  //BYTE1      
          Serial.write(0x00);  //BYTE2
          Serial.write(0xA1);  //BYTE3
          Serial.write(0x01);  //BYTE4
          Serial.write(00);  //BYTE5          
          Serial.write(0x00);  //BYTE6          
          Serial.write(0x1e);  //BYTE7
          Serial.write(0);  //BYTE8
          Serial.write(0);  //BYTE9
          Serial.write(0);  //BYTE10          
          Serial.write(0);  //BYTE11
          Serial.write(0);  //BYTE12
          delay(500);            
          Serial.write(0x0c);  //BYTE1      
          Serial.write(0x00);  //BYTE2
          Serial.write(0xA1);  //BYTE3
          Serial.write(0x00);  //BYTE4
          Serial.write(0);  //BYTE5          
          Serial.write(0x00);  //BYTE6          
          Serial.write(0);  //BYTE7
          Serial.write(0);  //BYTE8
          Serial.write(0);  //BYTE9
          Serial.write(0);  //BYTE10          
          Serial.write(0);  //BYTE11
          Serial.write(0);  //BYTE12

            break;
          case DELETE:
            line = false;
            break;
          case RETURN:
            line =! line;
            break;  
          //default:
            //Serial.print(HIDtoA( buf[ i ], buf[ 0 ] ));
          //  break;
        }//switch( buf[ i ...

        rcode = Usb.setReport( KBD_ADDR, 0, 1, KBD_IF, 0x02, 0, &leds );
        if( rcode ) {
          Serial.print("Set report error: ");
          Serial.println( rcode, HEX );
        }//if( rcode ...
     }//if( buf_compare( buf[ i ] ) == false ...
    }//for( i = 2...

    i=0;
    while (i<8)
      {
        if (old_buf[i]!=buf[i]) { i=12; }
        i++;
      }
    if (i==13) {
     // for (i=0;i<8;i++) {      
          //  Serial.print(buf[ i ],HEX);
          //  Serial.print(']');      
     //  }  
     // Serial.println(' ');          

          Serial.write(0x0c);  //BYTE1      
          Serial.write(0x00);  //BYTE2
          Serial.write(0xA1);  //BYTE3
          Serial.write(0x01);  //BYTE4
          //Labz_Debug Serial.write(buf[1]);  //BYTE5          
          Serial.write(buf[0]);  //BYTE5     //Labz_Debug
          Serial.write(0x00);  //BYTE6          
          Serial.write(buf[2]);  //BYTE7
          Serial.write(buf[3]);  //BYTE8
          Serial.write(buf[4]);  //BYTE9
          Serial.write(buf[5]);  //BYTE10          
          Serial.write(buf[6]);  //BYTE11
          Serial.write(buf[7]);  //BYTE12
    }  

    //Labz_Debug for( i = 2; i < 8; i++ ) {                    //copy new buffer to old
     for( i = 0; i < 8; i++ ) {                    //copy new buffer to old //Labz_Debug
      old_buf[ i ] = buf[ i ];
    }
}
/* compare byte against bytes in old buffer */
bool buf_compare( byte data )
{
 char i;
 for( i = 2; i < 8; i++ ) {
   if( old_buf[ i ] == data ) {
     return( true );
   }
 }
 return( false );
}

我在处理SCROLLLOCK 键的地方插入了一个测试代码,理论上按下这个键的时候,主机还会收到 1 这个字符,这样是为了测试工作是否正常。
我在 x86 台式机上实测过,工作正常;小米4手机上实测过,工作正常; iPad 上是测过,工作也正常。
在iPad上工作的视频在下面:

完整代码下载

BKC2COM

特别注意:
1. 因为我们使用的是最简单的Boot Protocol,所以如果你的键盘上有音量键之类的有可能失效;
2. 我不确定是否所有的键盘都会支持 Boot Protocol ,从之前玩USB鼠标的经验来看,确实有可能;
3. 供电部分没有经过优化,不知道电力消耗如何,不确定一个充电宝能够工作的时间;

最后讲一个小故事:有一次我去实验室,发现他们在折腾键盘。那是一款带着音量控制功能的键盘。系统测试的时候发现,按一下键盘音量键之后,屏幕上显示的音量会跳2格。从原理上说,按下那个键之后,键盘发出特定的Scan Code,系统中还有个专门响应这个Scan Code的程序然后在屏幕上绘制音量指示方块。蛮有意思的一件事情是:很多人认为大公司有操控供应商的能力,供应商在大厂面前会唯唯诺诺,这也是高层会有的想法,问题是底层人员未必吃这一套。每次想起这个事情,我都要想起敏感字关于矛盾的辩证法的论证。这个事情就是双方的下层在不停的扯,更准确的说,是键盘厂商,软件开发商和我们在一起纠缠,键盘厂商说同样的键盘在其他人家用起来没问题,软件开发商说我的软件在之前的机型上一直用,我们的人说,少扯淡,赶紧解决,前后一个多月都没有搞定…….那时候,组里刚买了一个usb逻辑分析仪,我用着感觉很好玩。于是,我就用逻辑分析仪测试了一下键盘,测试的结果是,键盘发出来的 Scan Code没有问题,每次按键都是一个Press一个Release,所以真相肯定是写上位机程序的软件厂商搞错了什么。截图附带着数据包一起丢给三方。这是最底层的传输,如果依然嘴硬,那只能落下笑柄而已。然后很快软件厂商就服软自己去修改了。只是说说我经历的事情,如果非要说出一些道理的话这个故事是为了说明:USB逻辑分析仪很有用……

就是这样.

=========================2017年5月11日更新=========================
有朋友说 Win ,Shift,Alt 都不工作,今天正好有空研究了一下,是我的代码有问题。解析出来的USB 键盘按键信息中 Buf[0] 是这些Key 的标志位,我没有正确Pass给模块。因此,修正下面2处代码,一个是发送,一个是每次保存当前的按键状态的位置:

          Serial.write(0x0c);  //BYTE1      
          Serial.write(0x00);  //BYTE2
          Serial.write(0xA1);  //BYTE3
          Serial.write(0x01);  //BYTE4
          Serial.write(buf[0]);  //BYTE5          
          Serial.write(0x00);  //BYTE6          
          Serial.write(buf[2]);  //BYTE7
          Serial.write(buf[3]);  //BYTE8
          Serial.write(buf[4]);  //BYTE9
          Serial.write(buf[5]);  //BYTE10          
          Serial.write(buf[6]);  //BYTE11
          Serial.write(buf[7]);  //BYTE12
          
    }  
 
    for( i = 0; i < 8; i++ ) {                    //copy new buffer to old
      old_buf[ i ] = buf[ i ];
    }

 

修改后可以正常工作的代码:

bkc2com1.1

参考:
1. http://www.lab-z.com/btkeyboard/ 蓝牙键盘模块的实验

Step to UEFI (62) —– 常用的字符串函数(上)

这里介绍一下常用的处理字符串的函数。这篇介绍 StrCpy/StrnCpy StrSize StrLen StrCmp/StrnCmp StrCat/StrnCat 。这些函数都是给 Unicode16 字符串设计的( CHAR16 定义的, 或者 L“www.lab-z.com” 这样定义的)。同样还有一组带有 Ascii 前缀的函数是给普通的字符串使用的。

函数定义原型可以在 \MdePkg\Include\Library\BaseLib.h 这个文件中找到

1.StrCpy (D<-S) 作用:将 Source 定义的字符串拷贝到 Destination 定义的字符串中(覆盖之)

//
// String Services
//

/**
  Copies one Null-terminated Unicode string to another Null-terminated Unicode
  string and returns the new Unicode string.

  This function copies the contents of the Unicode string Source to the Unicode
  string Destination, and returns Destination. If Source and Destination
  overlap, then the results are undefined.

  If Destination is NULL, then ASSERT().
  If Destination is not aligned on a 16-bit boundary, then ASSERT().
  If Source is NULL, then ASSERT().
  If Source is not aligned on a 16-bit boundary, then ASSERT().
  If Source and Destination overlap, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
  PcdMaximumUnicodeStringLength Unicode characters not including the
  Null-terminator, then ASSERT().

  @param  Destination The pointer to a Null-terminated Unicode string.
  @param  Source      The pointer to a Null-terminated Unicode string.

  @return Destination.

**/
CHAR16 *
EFIAPI
StrCpy (
  OUT     CHAR16                    *Destination,
  IN      CONST CHAR16              *Source
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{

  CHAR16 *s1=L"WWW.";
  CHAR16 *s2=L".LAB-Z.COM";
  CHAR16 *Result;
  
  Result=StrCpy(s1,s2);
  Print(L"%s\n",s1);  
  Print(L"%s\n",Result);

  return EFI_SUCCESS;
}

 

strtest1

换一种字符串定义方式

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{

  CHAR16 s1[20]=L"WWW.";
  CHAR16 s2[20]=L".LAB-Z.COM";
  CHAR16 *Result;
  
  Result=StrCpy(s1,s2);
  Print(L"%s\n",s1);  
  Print(L"%s\n",Result);

  return EFI_SUCCESS;
}

 

运行结果和上面的相同。

2.StrnCpy 作用:将 Source 定义的字符串中,前n个拷贝到 Destination 定义的字符串中(覆盖之)

/**
  Copies up to a specified length from one Null-terminated Unicode string to 
  another Null-terminated Unicode string and returns the new Unicode string.

  This function copies the contents of the Unicode string Source to the Unicode
  string Destination, and returns Destination. At most, Length Unicode
  characters are copied from Source to Destination. If Length is 0, then
  Destination is returned unmodified. If Length is greater that the number of
  Unicode characters in Source, then Destination is padded with Null Unicode
  characters. If Source and Destination overlap, then the results are
  undefined.

  If Length > 0 and Destination is NULL, then ASSERT().
  If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
  If Length > 0 and Source is NULL, then ASSERT().
  If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
  If Source and Destination overlap, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Length is greater than 
  PcdMaximumUnicodeStringLength, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
  PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,
  then ASSERT().

  @param  Destination The pointer to a Null-terminated Unicode string.
  @param  Source      The pointer to a Null-terminated Unicode string.
  @param  Length      The maximum number of Unicode characters to copy.

  @return Destination.

**/
CHAR16 *
EFIAPI
StrnCpy (
  OUT     CHAR16                    *Destination,
  IN      CONST CHAR16              *Source,
  IN      UINTN                     Length
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW.";
  CHAR16 *s2=L".LAB-Z.COM";
  CHAR16 *Result;
  
  Result=StrnCpy(s1,s2,4);
  Print(L"%s\n",s1);  
  Print(L"%s\n",Result);

  return EFI_SUCCESS;
}

 

strtest2

3.StrLen 作用:返回字符串中字符的个数,注意:数量不包括结尾的 NULL。

/**
  Returns the length of a Null-terminated Unicode string.

  This function returns the number of Unicode characters in the Null-terminated
  Unicode string specified by String.

  If String is NULL, then ASSERT().
  If String is not aligned on a 16-bit boundary, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and String contains more than
  PcdMaximumUnicodeStringLength Unicode characters not including the
  Null-terminator, then ASSERT().

  @param  String  Pointer to a Null-terminated Unicode string.

  @return The length of String.

**/
UINTN
EFIAPI
StrLen (
  IN      CONST CHAR16              *String
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW.";
  CHAR16 s2[20]=L".LAB-Z.COM";
  UINTN Result;
  
  Result=StrLen(s1);
  Print(L"%d\n",Result);

  Result=StrLen(s2);
  Print(L"%d\n",Result);
  
  return EFI_SUCCESS;
}

 

运行结果

strtest3

4. StrSize 作用:返回字符串占用的内存字节数,注意:包括 NULL。

/**
  Returns the size of a Null-terminated Unicode string in bytes, including the
  Null terminator.

  This function returns the size, in bytes, of the Null-terminated Unicode string 
  specified by String.

  If String is NULL, then ASSERT().
  If String is not aligned on a 16-bit boundary, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and String contains more than
  PcdMaximumUnicodeStringLength Unicode characters not including the
  Null-terminator, then ASSERT().

  @param  String  The pointer to a Null-terminated Unicode string.

  @return The size of String.

**/
UINTN
EFIAPI
StrSize (
  IN      CONST CHAR16              *String
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE		 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW";
  CHAR16 s2[40]=L"LAB-Z.COM";
  UINTN Result;
  
  Result=StrSize(s1);
  Print(L"%d\n",Result);

  Result=StrSize(s2);
  Print(L"%d\n",Result);
  
  return EFI_SUCCESS;
}

 

运行结果

strtest4

定义的字符串实际上是: “www\0” ,每个字符都是 CHAR16, 算下来需要占用 8个字节。

5. StrCmp 作用:比较字符串是否相同。相同的话返回 0

/**
  Compares two Null-terminated Unicode strings, and returns the difference
  between the first mismatched Unicode characters.

  This function compares the Null-terminated Unicode string FirstString to the
  Null-terminated Unicode string SecondString. If FirstString is identical to
  SecondString, then 0 is returned. Otherwise, the value returned is the first
  mismatched Unicode character in SecondString subtracted from the first
  mismatched Unicode character in FirstString.

  If FirstString is NULL, then ASSERT().
  If FirstString is not aligned on a 16-bit boundary, then ASSERT().
  If SecondString is NULL, then ASSERT().
  If SecondString is not aligned on a 16-bit boundary, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more
  than PcdMaximumUnicodeStringLength Unicode characters not including the
  Null-terminator, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more
  than PcdMaximumUnicodeStringLength Unicode characters, not including the
  Null-terminator, then ASSERT().

  @param  FirstString   The pointer to a Null-terminated Unicode string.
  @param  SecondString  The pointer to a Null-terminated Unicode string.

  @retval 0      FirstString is identical to SecondString.
  @return others FirstString is not identical to SecondString.

**/
INTN
EFIAPI
StrCmp (
  IN      CONST CHAR16              *FirstString,
  IN      CONST CHAR16              *SecondString
  );

 

实例代码:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW";
  CHAR16 s2[40]=L"LAB-Z.COM";
  CHAR16 s3[40]=L"LAB-Z";
  CHAR16 s4[40]=L"MAB-Z";  
  UINTN Result;
  
  Result=StrCmp(s1,s2);
  Print(L"%d\n",Result);

  Result=StrCmp(s2,s3);
  Print(L"%d\n",Result);

  Result=StrCmp(s3,s4);
  Print(L"%d\n",Result);
  
  return EFI_SUCCESS;
}

 

运行结果:

strtest5

6. StrnCmp 作用:和上面的比较函数类似,只是这个函数只比较指定的前n个字符

/**
  Compares up to a specified length the contents of two Null-terminated Unicode strings,
  and returns the difference between the first mismatched Unicode characters.
  
  This function compares the Null-terminated Unicode string FirstString to the
  Null-terminated Unicode string SecondString. At most, Length Unicode
  characters will be compared. If Length is 0, then 0 is returned. If
  FirstString is identical to SecondString, then 0 is returned. Otherwise, the
  value returned is the first mismatched Unicode character in SecondString
  subtracted from the first mismatched Unicode character in FirstString.

  If Length > 0 and FirstString is NULL, then ASSERT().
  If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().
  If Length > 0 and SecondString is NULL, then ASSERT().
  If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Length is greater than
  PcdMaximumUnicodeStringLength, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than
  PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,
  then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than
  PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,
  then ASSERT().

  @param  FirstString   The pointer to a Null-terminated Unicode string.
  @param  SecondString  The pointer to a Null-terminated Unicode string.
  @param  Length        The maximum number of Unicode characters to compare.

  @retval 0      FirstString is identical to SecondString.
  @return others FirstString is not identical to SecondString.

**/
INTN
EFIAPI
StrnCmp (
  IN      CONST CHAR16              *FirstString,
  IN      CONST CHAR16              *SecondString,
  IN      UINTN                     Length
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW";
  CHAR16 s2[40]=L"LAB-Z.COM";
  CHAR16 s3[40]=L"LAB-Z";
  CHAR16 s4[40]=L"MAB-Z";  
  
  Result=StrnCmp(s1,s2,7);
  Print(L"%d\n",Result);

  Result=StrnCmp(s2,s3,5);
  Print(L"%d\n",Result);

  Result=StrnCmp(s3,s4,5);
  Print(L"%d\n",Result);
  
  return EFI_SUCCESS;
}

 

运行结果

strtest6

7. StrCat 作用:将 Source 字符串的内容拼接到 Destination 字符串上。

/**
  Concatenates one Null-terminated Unicode string to another Null-terminated
  Unicode string, and returns the concatenated Unicode string.

  This function concatenates two Null-terminated Unicode strings. The contents
  of Null-terminated Unicode string Source are concatenated to the end of
  Null-terminated Unicode string Destination. The Null-terminated concatenated
  Unicode String is returned. If Source and Destination overlap, then the
  results are undefined.

  If Destination is NULL, then ASSERT().
  If Destination is not aligned on a 16-bit boundary, then ASSERT().
  If Source is NULL, then ASSERT().
  If Source is not aligned on a 16-bit boundary, then ASSERT().
  If Source and Destination overlap, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
  than PcdMaximumUnicodeStringLength Unicode characters, not including the
  Null-terminator, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
  PcdMaximumUnicodeStringLength Unicode characters, not including the
  Null-terminator, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
  and Source results in a Unicode string with more than
  PcdMaximumUnicodeStringLength Unicode characters, not including the
  Null-terminator, then ASSERT().

  @param  Destination The pointer to a Null-terminated Unicode string.
  @param  Source      The pointer to a Null-terminated Unicode string.

  @return Destination.

**/
CHAR16 *
EFIAPI
StrCat (
  IN OUT  CHAR16                    *Destination,
  IN      CONST CHAR16              *Source
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW.";
  CHAR16 s2[40]=L"LAB-Z.COM";
  CHAR16 *Result;
  
  Result=StrCat(s1,s2);
  Print(L"%s\n",Result);
  
  return EFI_SUCCESS;
}

 

运行结果

strtest7

8.StrnCat 作用:将 Source 字符串前面n个字符的内容拼接到 Destination 字符串上。

/**
  Concatenates up to a specified length one Null-terminated Unicode to the end 
  of another Null-terminated Unicode string, and returns the concatenated 
  Unicode string.

  This function concatenates two Null-terminated Unicode strings. The contents
  of Null-terminated Unicode string Source are concatenated to the end of
  Null-terminated Unicode string Destination, and Destination is returned. At
  most, Length Unicode characters are concatenated from Source to the end of
  Destination, and Destination is always Null-terminated. If Length is 0, then
  Destination is returned unmodified. If Source and Destination overlap, then
  the results are undefined.

  If Destination is NULL, then ASSERT().
  If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().
  If Length > 0 and Source is NULL, then ASSERT().
  If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().
  If Source and Destination overlap, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Length is greater than 
  PcdMaximumUnicodeStringLength, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Destination contains more
  than PcdMaximumUnicodeStringLength Unicode characters, not including the
  Null-terminator, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and Source contains more than
  PcdMaximumUnicodeStringLength Unicode characters, not including the
  Null-terminator, then ASSERT().
  If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination
  and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength
  Unicode characters, not including the Null-terminator, then ASSERT().

  @param  Destination The pointer to a Null-terminated Unicode string.
  @param  Source      The pointer to a Null-terminated Unicode string.
  @param  Length      The maximum number of Unicode characters to concatenate from
                      Source.

  @return Destination.

**/
CHAR16 *
EFIAPI
StrnCat (
  IN OUT  CHAR16                    *Destination,
  IN      CONST CHAR16              *Source,
  IN      UINTN                     Length
  );

 

实例:

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  CHAR16 *s1=L"WWW.";
  CHAR16 s2[40]=L"LAB-Z.COM";
  CHAR16 *Result;
  
  Result=StrnCat(s1,s2,3);
  Print(L"%s\n",Result);
  
  return EFI_SUCCESS;
}

 

运行结果

strtest9

本文参考 《UEFI 原理与编程》。

蓝牙键盘模块的实验

之前介绍过两种Arduino 模拟键盘的方法,一种是普通的Uno加上电阻之类的元件;一种是使用自带 USB 功能的 Arduino ,比如 Leonardo ,内部集成了USB Slave控制器。 这里再介绍蓝牙方案。

我们最常见的就是蓝牙透传模块,用蓝牙搜索安装之后能在系统中模拟出来一个串口,上位机直接按照串口方式即可进行通讯。这次介绍一款蓝牙键盘模块(实际上是键盘鼠标模块)。

外观和普通蓝牙透传模块一样(蓝牙芯片真正有用的都是内部Firmware)

TB1E9gOIVXXXXbOXpXXXXXXXXXX_!!0-item_pic

用法非常类似,在蓝牙中搜索连接之后系统中会出现键盘设备。

btkeyboard

然后数据是从串口送到蓝牙设备中的。根据说明我用 Arduino 编写了一个简单的测试程序,每隔5秒发送 “1” 字符。

输入 1:
按下数据 1 数据包为: 0C 00 A1 01 00 00 1E 00 00 00 00 00
按键弹起: 0C 00 A1 01 00 00 00 00 00 00 00 00

程序如下:

char KeyPress[]={0x0C,0x00,0xA1,0x01,0x00,0x00,0x1E,0x00,0x00,0x00,0x00,0x00};
char KeyRelease[]={0x0C,0x00,0xA1,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
void setup() {
  // put your setup code here, to run once:
    Serial1.begin(9600);      //设置串口波特率
}

void loop() {
   for (byte i=0;i<sizeof(KeyPress);i++)
    {
     Serial1.write(KeyPress[i]);
    } 
   for (byte i=0;i<sizeof(KeyRelease);i++)
    {
     Serial1.write(KeyRelease[i]);
    }
  delay(5000);  
}

 

测试结果,每隔5秒我的电脑上就可以收到一个 1 的输入。

更多的好玩还在研究中。有模拟键盘需要的朋友不妨考虑这样的蓝牙模块,顺便说一下,这种模块在35元左右,比普通透传模块贵多了(通常20左右)。当然,你可以看看国外类似的产品,Adafruit出品的“EZ-Key BT HID Keyboard Controller纸模块”价格在180元,感觉就不那么贵了……

TB1y1XyJXXXXXbnXXXXXXXXXXXX_!!0-item_pic

==================================================================
2016年3月13日 更新
我一直以为在文章中放出来过购买链接,昨天有朋友问检查了一下才发现我忘记了。这个模块的购买链接是 https://item.taobao.com/item.htm?spm=a1z09.2.0.0.V7mzul&id=521222818182&_u=dkf8s9fbec
卖家名字是 “重庆翔码电子工厂店”。买的时候你不妨问一下卖家,说你要做蓝牙HID设备,这个和普通常用的蓝牙串口透传模块之类的是不同的。
再放一下这个模块的说明书:BTHID

特别注意:之前我一直以为蓝牙键盘模块和蓝牙扫描枪模块是同一个东西,结果有朋友买成了“蓝牙扫描枪模块”,结果无法使用。他们之间的差别在于,键盘模块可以发送 shift/alt/ctrl 等等。蓝牙扫描枪模块只能发送可见的 ascii。
所以一定要询问清楚(估计是当时我和卖家说了,然后虽然拍下的是蓝牙扫描枪模块,但是给我的是蓝牙键盘模块)。

攀藤 G3

之前一直在使用攀藤 G1 ,前面提到 G1 都坏掉了郁闷无比。然后入手了一个 G3 。之所以还选择攀藤的产品最主要是考虑尽可能的复用之前的代码……

下面图是 G1 和 G3 外观,可以看出 G3 要小一点:

g1g3

数据上和G1稍微有些差别,主要是送出来的数据短了一些。

下面是串口实际获得的数据

G3

具体解读(来自说明书)

g3result

最后修改一下之前给 G1 写的 APP 即可

G3App

完整的代码
G3Ver1source

编译后的程序
Project2

Arduino 控制USB设备(7)解析USB鼠标的例子(下)

前面实现了HP 鼠标数据的读取,下面继续研究 DELL 的鼠标。还是首先运行取得描述符的程序,结果如下:

Start
Device addressed… Requesting device descriptor.
Device descriptor:

Descriptor Length: 12
USB version: 1.10
Class: 00 Use class information in the Interface Descriptor
Subclass: 00
Protocol: 00
Max.packet size: 08
Vendor ID: 2188
Product ID: 0AE1
Revision ID: 0100
Mfg.string index: 00
Prod.string index: 01 Length: 38 Contents: USB OPTICAL MOUSE
Serial number index: 00
Number of conf.: 01

Configuration number 0
Total configuration length: 34 bytes

Configuration descriptor:
Total length: 0022
Number of interfaces: 01
Configuration value: 01
Configuration string: 00
Attributes: A0 Remote Wakeup
Max.power: 32 100ma

Interface descriptor:
Interface number: 00
Alternate setting: 00
Endpoints: 01
Class: 03 HID (Human Interface Device)
Subclass: 01
Protocol: 02
Interface string: 00

HID descriptor:
Descriptor length: 09 9 bytes
HID version: 1.11
Country Code: 0 Not Supported
Class Descriptors: 1
Class Descriptor Type: 22 Report
Class Descriptor Length:66 bytes

HID report descriptor:

Length: 1 Type: Global Tag: Usage Page Generic Desktop Controls Data: 01
Length: 1 Type: Local Tag: Usage Data: 02
Length: 1 Type: Main Tag: Collection Application (mouse, keyboard) Data: 01
Length: 1 Type: Global Tag: Report ID Data: 01
Length: 1 Type: Local Tag: Usage Data: 01
Length: 1 Type: Main Tag: Collection Physical (group of axes) Data: 00
Length: 1 Type: Global Tag: Usage Page Button Data: 09
Length: 1 Type: Local Tag: Usage Minimum Data: 01
Length: 1 Type: Local Tag: Usage Maximum Data: 03
Length: 1 Type: Global Tag: Logical Minimum Data: 00
Length: 1 Type: Global Tag: Logical Maximum Data: 01
Length: 1 Type: Global Tag: Report Count Data: 03
Length: 1 Type: Global Tag: Report Size Data: 01
Length: 1 Type: Main Tag: Input Data,Variable,Absolute,No Wrap,Linear,Preferred State,No Null Position,Non-volatile(Ignore for Input), Data: 02
Length: 1 Type: Global Tag: Report Count Data: 01
Length: 1 Type: Global Tag: Report Size Data: 05
Length: 1 Type: Main Tag: Input Constant,Array,Absolute,No Wrap,Linear,Preferred State,No Null Position,Non-volatile(Ignore for Input), Data: 01
Length: 1 Type: Global Tag: Usage Page Generic Desktop Controls Data: 01
Length: 1 Type: Local Tag: Usage Data: 30
Length: 1 Type: Local Tag: Usage Data: 31
Length: 2 Type: Global Tag: Logical Minimum Data: 00 Data: F8
Length: 2 Type: Global Tag: Logical Maximum Data: FF Data: 07
Length: 1 Type: Global Tag: Report Size Data: 0C
Length: 1 Type: Global Tag: Report Count Data: 02
Length: 1 Type: Main Tag: Input Data,Variable,Relative,No Wrap,Linear,Preferred State,No Null Position,Non-volatile(Ignore for Input), Data: 06
Length: 1 Type: Local Tag: Usage Data: 38
Length: 1 Type: Global Tag: Logical Minimum Data: 81
Length: 1 Type: Global Tag: Logical Maximum Data: 7F
Length: 1 Type: Global Tag: Report Size Data: 08
Length: 1 Type: Global Tag: Report Count Data: 01
Length: 1 Type: Main Tag: Input Data,Variable,Relative,No Wrap,Linear,Preferred State,No Null Position,Non-volatile(Ignore for Input), Data: 06
Length: 0 Type: Main Tag: End Collection
Length: 0 Type: Main Tag: End Collection

Endpoint descriptor:
Endpoint address: 01 Direction: IN
Attributes: 03 Transfer type: Interrupt
Max.packet size: 0006
Polling interval: 0A 10 ms

同样,尝试之前的 Get_Report 方式的程序,得到的却是不停的输出的错误信息:

Setup packet error: 7
Mouse Poll Error: 7

没有办法直接了解这个错误编号的含义,最后只能用逻辑分析仪分析产生问题的原因:

usb71

可以看到当发送Get_Report之后,Device 会返回STALL 。

对比之前能够正常工作的 HP 鼠标,收到 Get_Report 后,会返回 ACK 还会继续通讯。

usb72

查看资料上说,返回STALL有可能是因为设备不支持该指令…… Windows的设备经常会出现这样的情况:可以正常工作,但是未必完整的 follow 工业标准。

上面的方法行不通,只能用中断方式来获取数据。我去掉了切换 Boot Protocol 的代码

/* Mouse communication via interrupt endpoint  */
/* Assumes EP1 as interrupt IN ep              */
#include "max3421e.h"
#include "usb.h"
 
#define DEVADDR 1
#define CONFVALUE 1
#define EP_MAXPKTSIZE 5
EP_RECORD ep_record[ 2 ];  //endpoint record structure for the mouse
 
 
void setup();
void loop();
 
MAX3421E Max;
USB Usb;
 
void setup()
{
    Serial.begin( 115200 );
    Serial.println("Start");
    Max.powerOn();
    delay( 200 );
}
 
void loop()
{
 byte rcode;
    Max.Task();
    Usb.Task();
    if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING ) {
        mouse1_init();
    }//if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING...
    if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) {  //poll the keyboard
        rcode = mouse1_poll();
        if( rcode ) {
          Serial.print("Mouse Poll Error: ");
          Serial.println( rcode, HEX );
        }//if( rcode...
    }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING...
}
/* Initialize mouse */
void mouse1_init( void )
{
 byte rcode = 0;  //return code
 byte tmpdata;
 byte* byte_ptr = &tmpdata;
  /**/
  ep_record[ 0 ] = *( Usb.getDevTableEntry( 0,0 ));  //copy endpoint 0 parameters
  ep_record[ 1 ].MaxPktSize = EP_MAXPKTSIZE;
  ep_record[ 1 ].sndToggle = bmSNDTOG0;
  ep_record[ 1 ].rcvToggle = bmRCVTOG0;
  Usb.setDevTableEntry( 1, ep_record );              //plug kbd.endpoint parameters to devtable
  /* Configure device */
  rcode = Usb.setConf( DEVADDR, 0, CONFVALUE );
  if( rcode ) {
    Serial.print("Error configuring mouse. Return code : ");
    Serial.println( rcode, HEX );
    while(1);  //stop
  }//if( rcode...
  
  rcode = Usb.setIdle( DEVADDR, 0, 0, 0, tmpdata );
  if( rcode ) {
    Serial.print("Set Idle error. Return code : ");
    Serial.println( rcode, HEX );
    while(1);  //stop
  }
  
  rcode = Usb.getIdle( DEVADDR, 0, 0, 0, (char *)byte_ptr );
  if( rcode ) {
    Serial.print("Get Idle error. Return code : ");
    Serial.println( rcode, HEX );
    while(1);  //stop
  }
  Serial.print("Idle Rate: ");
  Serial.print(( tmpdata * 4 ), DEC );        //rate is returned in multiples of 4ms
  Serial.println(" ms");
  tmpdata = 0;
  rcode = Usb.setIdle( DEVADDR, 0, 0, 0, tmpdata );
  if( rcode ) {
    Serial.print("Set Idle error. Return code : ");
    Serial.println( rcode, HEX );
    while(1);  //stop
  }
  Usb.setUsbTaskState( USB_STATE_RUNNING );
  return;
}
/* Poll mouse via interrupt endpoint and print result */
/* assumes EP1 as interrupt endpoint                  */
byte mouse1_poll( void )
{
  byte rcode,i;
  char buf[ 6 ] = { 0 };                          //mouse report buffer

  unsigned long int libuf[ sizeof(buf) ];
  unsigned long int x;
  unsigned long int y;

  
  /* poll mouse */
  rcode = Usb.inTransfer( DEVADDR, 1, sizeof(buf), buf, 1 );  //

    if( rcode ) {  //error
      if( rcode == 0x04 ) {  //NAK
        rcode = 0;
      }
      return( rcode );
    }
    /* print buffer */
    if( buf[ 1 ] & 0x01 ) {
      Serial.println("Button1 pressed ");
    }
    if( buf[ 1 ] & 0x02 ) {
      Serial.println("Button2 pressed ");
    }
    if( buf[ 1 ] & 0x04 ) {
      Serial.println("Button3 pressed ");
    }
    
    for (int i=0;i<sizeof(buf);i++) {
       libuf[i]=(buf[i]) & 0xff;
    }
    
    /*  
    Serial.print(libuf[0],HEX); Serial.print("  "); 
    Serial.print(libuf[1],HEX); Serial.print("  "); 
    Serial.print(libuf[2],HEX); Serial.print("  "); 
    Serial.print(libuf[3],HEX); Serial.print("  ");     
    Serial.print(libuf[4],HEX); Serial.print("  ");         
    Serial.print(libuf[5],HEX); Serial.print("  ");             
    Serial.println("");
    */
    
    Serial.print("X-axis: ");
    x=((libuf[3] & 0xF)<<8)+(libuf[2] & 0xFF );
    if (x & 0x800) {
      Serial.print("-");
      x = ((~x) & 0x7FF) +1;
    }
   
    Serial.print(x, HEX);  Serial.print("   ");
    
    Serial.print("Y-axis: ");    
    y=(((libuf[3]>>4) & 0xF) +((libuf[4] & 0xFF )<<4));
    if (y & 0x800) {
      Serial.print("-");
      y = ((~y) & 0x7FF) +1;
    }    
    Serial.print(y, HEX); Serial.print("   ");

    Serial.print("Wheel: ");    
    Serial.println(buf [5] & 0xFF, HEX);    

    return( rcode );
}

 

和前面那个程序相比,这个特别之处在于返回值多了 Report_ID ,对于我们处理数据来说,只是有效数据从 Buf[1] 开始,其他地方并无特别。

运行结果

usb73

完整代码下载

mousec

基本上,鼠标的玩法就是这些。可以用鼠标做很多好玩的东西。

Processing 做一个输入的文本框

根据网上搜到的结果,在【参考1】下载了 controlP5 的库,然后使用下面的程序

import controlP5.*;

ControlP5 cp5;

String[] textfieldNames = {"tf1", "tf2", "tf3", "tf4", "tf5"};

void setup() {
  size(700,400);

  PFont font = createFont("arial",20);

  cp5 = new ControlP5(this);

  int y = 20;
  int spacing = 60;
  for(String name: textfieldNames){
    cp5.addTextfield(name)
       .setPosition(20,y)
       .setSize(100,40)
       .setFont(font)
       .setFocus(true)
       .setColor(color(255,0,0))
       ;
     y += spacing;
  }

  textFont(font);
}

void draw() {
  background(0);
}

void controlEvent(ControlEvent theEvent) {
  if(theEvent.isAssignableFrom(Textfield.class)) {
    println("controlEvent: accessing a string from controller '"
            +theEvent.getName()+"': "
            +theEvent.getStringValue()
            );
  }
}

 

运行结果

prctext
参考:

1. http://www.sojamo.de/libraries/controlP5/

Step to UEFI (61) —– SHA-1的实现

前面介绍了 MD5 的实现,这里介绍一下 SHA-1 算法的实现。具体代码来自【参考1】。

和之前 MD5 程序有一些差别在于这个程序不是一次性将所有文件都放入内存中,而是放入一部分,计算一部分,再用中间结果继续计算下一部分。这样,再大的文件也可以正常处理。

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>

#include  <stdio.h>
#include  <stdlib.h>
#include  <wchar.h>

#include <Protocol/EfiShell.h>
#include <Library/ShellLib.h>
#include <Library/MemoryAllocationLib.h>

#include "sha1.h"

#define BUFFERSIZE 2048

extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

extern EFI_SHELL_PROTOCOL        *gEfiShellProtocol;

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  EFI_FILE_HANDLE   FileHandle;
  RETURN_STATUS     Status;
  EFI_FILE_INFO     *FileInfo = NULL;
  EFI_HANDLE        *HandleBuffer=NULL;
  UINTN  			ReadSize=BUFFERSIZE;
  SHA1Context 		sha;
  
  //Check if there is a parameter
  if (Argc == 1) {
	Print(L"Usage: crctest [filename]\n");
	return 0;
  }
  
  //Open the file given by the parameter
  Status = ShellOpenFileByName(Argv[1], (SHELL_FILE_HANDLE *)&FileHandle,
                               EFI_FILE_MODE_READ , 0);

  if(Status != RETURN_SUCCESS) {
        Print(L"OpenFile failed!\n");
		return EFI_SUCCESS;
      }			

  //Get file size	  
  FileInfo = ShellGetFileInfo( (SHELL_FILE_HANDLE)FileHandle);	

  /*
   *  Reset the SHA-1 context and process input
  */
  SHA1Reset(&sha);
		
  //Allocate a memory buffer
  HandleBuffer = AllocateZeroPool(BUFFERSIZE);
  if (HandleBuffer == NULL) {
      return (SHELL_OUT_OF_RESOURCES);   }

	while (BUFFERSIZE == ReadSize)		
    {
		ReadSize=BUFFERSIZE;
		//Load the whole file to the buffer
		Status = ShellReadFile(FileHandle,&ReadSize,HandleBuffer);
		SHA1Input(&sha,(unsigned char *)  HandleBuffer, ReadSize);
   } 
  
  //Output
  Print(L"File Name: %s\n",Argv[1]);
  Print(L"File Size: %d\n",(UINTN)FileInfo-> FileSize);

  if (!SHA1Result(&sha))
        {
            Print(L"sha: could not compute message digest\n");
        }
  else
        {
            Print(L"%08X %08X %08X %08X %08X\n",
                    sha.Message_Digest[0],
                    sha.Message_Digest[1],
                    sha.Message_Digest[2],
                    sha.Message_Digest[3],
                    sha.Message_Digest[4]);
        }
  
  FreePool(HandleBuffer);	
  return EFI_SUCCESS;
}

 

运行结果:

sha-1

完整的代码下载:

sha1test

参考:

1.https://www.packetizer.com/

Step to UEFI (60) —– GUID和UUID

了解了一下 UUID 和 GUID , 资料上来看,这两个是同一个东西。GUID 是 MS 定义的 UUID 的一种实现方法. 两者在写法上稍微有些差别【参考1】【参考2】:

GUID:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx (8-4-4-4-12)

UUID:xxxxxxxx-xxxx-xxxx-xxxxxxxxxxxxxxxx (8-4-4-16)

在 UEFI 中,我们经常看到类似下面的定义

“cf8e16a5-c1e8-4e25-b712-4f54a96702c8”

#define EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_GUID \
{ \
0x964e5b22, 0x6459, 0x11d2, {0x8e, 0x39, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b } \
}

UUID PadFileGuid;

对于 GUID ,可以在 \MdePkg\Include\Base.h 看到下面的定义

///
/// 128 bit buffer containing a unique identifier value.
/// Unless otherwise specified, aligned on a 64 bit boundary.
///
typedef struct {
  UINT32  Data1;
  UINT16  Data2;
  UINT16  Data3;
  UINT8   Data4[8];
} GUID;

 

同时,在 \MdePkg\Include\Uefi\UefiBaseType.h 有下面的定义

///
/// 128-bit buffer containing a unique identifier value.
///
typedef GUID                      EFI_GUID;

 

在 \BaseTools\Source\C\Common\CommonLib.c 有一个打印输出的例子可以直接拿出来用


EFI_STATUS
PrintGuid (
  IN EFI_GUID *Guid
  )
/*++

Routine Description:

  This function prints a GUID to STDOUT.

Arguments:

  Guid    Pointer to a GUID to print.

Returns:

  EFI_SUCCESS             The GUID was printed.
  EFI_INVALID_PARAMETER   The input was NULL.

--*/
{
  if (Guid == NULL) {
    Error (NULL, 0, 2000, "Invalid parameter", "PrintGuidToBuffer() called with a NULL value");
    return EFI_INVALID_PARAMETER;
  }

  printf (
    "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
    (unsigned) Guid->Data1,
    Guid->Data2,
    Guid->Data3,
    Guid->Data4[0],
    Guid->Data4[1],
    Guid->Data4[2],
    Guid->Data4[3],
    Guid->Data4[4],
    Guid->Data4[5],
    Guid->Data4[6],
    Guid->Data4[7]
    );
  return EFI_SUCCESS;
}

 

最后,写一个输出的例子

#include  <Uefi.h>
#include  <Library/UefiLib.h>
#include  <Library/ShellCEntryLib.h>

#include  <stdio.h>
#include  <stdlib.h>
#include  <wchar.h>

#include <Protocol/EfiShell.h>
#include <Library/ShellLib.h>


extern EFI_BOOT_SERVICES         *gBS;
extern EFI_SYSTEM_TABLE			 *gST;
extern EFI_RUNTIME_SERVICES 	 *gRT;

#define GUID1 \
  { \
    0x964e5b22, 0x6459, 0x11d2, {0x8e, 0x39, 0x0, 0xa0, 0xc9, 0x69, 0x72, 0x3b } \
  }

#define GUID2 \
  { \
    0x33221100, 0x5544, 0x7766, {0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF } \
  }
  
EFI_STATUS
PrintGuid (
  IN EFI_GUID *Guid
  )
  
/*++

Routine Description:

  This function prints a GUID to STDOUT.

Arguments:

  Guid    Pointer to a GUID to print.

Returns:

  EFI_SUCCESS             The GUID was printed.
  EFI_INVALID_PARAMETER   The input was NULL.

--*/
{
  if (Guid == NULL) {
	printf("Parameter error!\n");
    return EFI_INVALID_PARAMETER;
  }

  printf (
    "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
    (unsigned) Guid->Data1,
    Guid->Data2,
    Guid->Data3,
    Guid->Data4[0],
    Guid->Data4[1],
    Guid->Data4[2],
    Guid->Data4[3],
    Guid->Data4[4],
    Guid->Data4[5],
    Guid->Data4[6],
    Guid->Data4[7]
    );
  return EFI_SUCCESS;
}

int
EFIAPI
main (
  IN int Argc,
  IN CHAR16 **Argv
  )
{
  EFI_GUID T1=GUID1;
  EFI_GUID T2=GUID2;
  
  PrintGuid(&T1);
  PrintGuid(&T2);
  
  return EFI_SUCCESS;
}

 

运行结果

guid

完整代码下载

GUIDTest

参考:
1.http://baike.baidu.com/view/1052579.htm UUID
2.http://blog.csdn.net/forlong401/article/details/7580147 UUID 和 GUID 的区别
3.https://en.wikipedia.org/wiki/Globally_unique_identifier Globally unique identifier
4.https://en.wikipedia.org/wiki/Universally_unique_identifier Universally unique identifier

拆了攀登 G1 PM 2.5 传感器

上次买了攀藤 G1 PM2.5 传感器了,这次有需要又拿了出来使用【参考1】。很不幸,经常不工作,探究原因似乎与接线有关系,于是我又重新做了一个线(上次和卖家多要了一根线),用上之后现象稍微有些改善,但是移动之类的还会导致失灵,具体现象就是风扇不转,碰碰插头之类的就好了。一怒之下,拆开研究:

首先,外面是一层壳子,这个可以直接撬开(蓝色的是外面的塑料膜,我基本上没有用,所以这层薄膜还在的)

1

然后,需要拧掉周围四个固定外壳的螺丝,此外还要拧下固定风扇的三个螺丝才能继续拆解。螺丝居然生锈了,我很惊奇。基本上没怎么用,也都是一直放在家里不知道为什么会这样,观察另外一只(好吧,其实我是买个2个的),同样也有生锈的情况

2

最后,用螺丝刀之类的撬开即可

3

主板上有一颗CY8C 的单片机。更惊奇的是:主板上固定的螺丝竟然也有锈蚀!

4

背面是关键,可以看出有一个激光头样子的东西,这应该是这个传感器的关键部件,配合风扇和壳子内部形成的风道,可以计量单位时间颗粒物的数量。

5

研究发现插头不紧的原因是:他选用的那种连接件不是自锁样式的。比如:在拆开上面状态下,无法插入接线然后保持卡住的状态。连接件只是让金属接触上,然后卡住是外壳的功劳。这样,如果外壳出现松动或者接头磨损之类的,就根本无法卡住,就会出现我遇到的问题。

前几个月,我在实验点亮各种 MIPI 屏幕,然后发现接口卡具没多久就坏掉了,我去和硬件工程师说,你们做的时候不能选点好的连接器么,他回答是:这个东西装上基本上不会再拆了,像你这样拆来拆去的属于特殊情况,从成本角度考虑我们不会有选择结实一点的需求,估计这个传感器也是本着这样的思路设计的。

最后的结论:东西不错,但是连接设计太差,如果你要像我这样做 DIY 有经常插拔的需求,不建议选择这款。如果你是做毕业设计之类的展示性工作,最好再多买一个备份。

后面的话我想找个 HW 帮着焊接出来一根永久固定的线吧。

参考:

1.http://www.lab-z.com/g1pm25/ 攀藤 G1 PM2.5传感器

Arduino 控制USB设备(6)解析USB鼠标的例子(上)

前面介绍了USB键盘的使用,这里介绍一下USB鼠标的调用。根据【参考1】的文章进行实验,这次我们的目标是:获得鼠标移动按键信息,串口输出之。

首先运行一下之前的取得描述符的工具抓取一下描述符:

Descriptor of HP Mouse
Start
Device addressed… Requesting device descriptor.
Device descriptor:

Descriptor Length: 12
USB version: 2.0
Class: 00 Use class information in the Interface Descriptor
Subclass: 00
Protocol: 00
Max.packet size: 08
Vendor ID: 046D
Product ID: C077
Revision ID: 6700
Mfg.string index: 01 Length: 18 Contents: Logitech
Prod.string index: 02 Length: 36 Contents: USB Optical Mouse
Serial number index: 00
Number of conf.: 01

Configuration number 0
Total configuration length: 34 bytes

Configuration descriptor:
Total length: 0022
Number of interfaces: 01
Configuration value: 01
Configuration string: 00
Attributes: A0 Remote Wakeup
Max.power: 31 98ma

Interface descriptor:
Interface number: 00
Alternate setting: 00
Endpoints: 01
Class: 03 HID (Human Interface Device)
Subclass: 01
Protocol: 02
Interface string: 00

HID descriptor:
Descriptor length: 09 9 bytes
HID version: 1.11
Country Code: 0 Not Supported
Class Descriptors: 1
Class Descriptor Type: 22 Report
Class Descriptor Length:67 bytes

HID report descriptor:

Length: 1 Type: Global Tag: Usage Page Generic Desktop Controls Data: 01
Length: 1 Type: Local Tag: Usage Data: 02
Length: 1 Type: Main Tag: Collection Application (mouse, keyboard) Data: 01
Length: 1 Type: Local Tag: Usage Data: 01
Length: 1 Type: Main Tag: Collection Physical (group of axes) Data: 00
Length: 1 Type: Global Tag: Usage Page Button Data: 09
Length: 1 Type: Local Tag: Usage Minimum Data: 01
Length: 1 Type: Local Tag: Usage Maximum Data: 08
Length: 1 Type: Global Tag: Logical Minimum Data: 00
Length: 1 Type: Global Tag: Logical Maximum Data: 01
Length: 1 Type: Global Tag: Report Size Data: 01
Length: 1 Type: Global Tag: Report Count Data: 08
Length: 1 Type: Main Tag: Input Data,Variable,Absolute………
Length: 1 Type: Global Tag: Usage Page Generic Desktop Controls Data: 01
Length: 2 Type: Global Tag: Logical Minimum Data: 01 Data: F8
Length: 2 Type: Global Tag: Logical Maximum Data: FF Data: 07
Length: 1 Type: Global Tag: Report Size Data: 0C
Length: 1 Type: Global Tag: Report Count Data: 02
Length: 1 Type: Local Tag: Usage Data: 30
Length: 1 Type: Local Tag: Usage Data: 31
Length: 1 Type: Main Tag: Input Data,Variable,Relative………
Length: 1 Type: Global Tag: Logical Minimum Data: 81
Length: 1 Type: Global Tag: Logical Maximum Data: 7F
Length: 1 Type: Global Tag: Report Size Data: 08
Length: 1 Type: Global Tag: Report Count Data: 01
Length: 1 Type: Local Tag: Usage Data: 38
Length: 1 Type: Main Tag: Input Data,Variable,Relative………
Length: 1 Type: Global Tag: Usage Page Consumer Data: 0C
Length: 2 Type: Local Tag: Usage Data: 38 Data: 02
Length: 1 Type: Global Tag: Report Count Data: 01
Length: 1 Type: Main Tag: Input Data,Variable,Relative………
Length: 0 Type: Main Tag: End Collection
Length: 0 Type: Main Tag: End Collection

Endpoint descriptor:
Endpoint address: 01 Direction: IN
Attributes: 03 Transfer type: Interrupt
Max.packet size: 0006
Polling interval: 0A 10 ms

根据上面的结果,计算长度应该是1×8+Cx2+8×1=40 bits= 5 bytes ,修改【参考1】的代码如下:

#include "Max3421e.h"
#include "Usb.h"

 
#define DEVADDR 1
#define CONFVALUE 1
 
void setup();
void loop();
 
MAX3421E Max;
USB Usb;
 
void setup()
{
    Serial.begin( 115200 );
    Serial.println("Start");
    Max.powerOn();
    delay( 200 );
}
 
void loop()
{
 byte rcode;
    Max.Task();
    Usb.Task();
    if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING ) {
        mouse0_init();
    }//if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING...
    if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) {  //poll the keyboard
        rcode = mouse0_poll();
        if( rcode ) {
          Serial.print("Mouse Poll Error: ");
          Serial.println( rcode, HEX );
        }//if( rcode...
    }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING...
}
/* Initialize mouse */
void mouse0_init( void )
{
 byte rcode = 0;  //return code
  /**/
  Usb.setDevTableEntry( 1, Usb.getDevTableEntry( 0,0 ) );              //copy device 0 endpoint information to device 1
  /* Configure device */
  rcode = Usb.setConf( DEVADDR, 0, CONFVALUE );
  if( rcode ) {
    Serial.print("Error configuring mouse. Return code : ");
    Serial.println( rcode, HEX );
    while(1);  //stop
  }//if( rcode...

  Usb.setUsbTaskState( USB_STATE_RUNNING );
  return;
}
/* Poll mouse using Get Report and print result */
byte mouse0_poll( void )
{
  byte rcode,i;
  char buf[ 4 ] = { 0 };      //mouse buffer
  static char old_buf[ 4 ] = { 0 };  //last poll
    /* poll mouse */
    rcode = Usb.getReport( DEVADDR, 0, 4, 0, 1, 0, buf );
    if( rcode ) {  //error
      return( rcode );
    }
    for( i = 0; i < 4; i++) {  //check for new information
      if( buf[ i ] != old_buf[ i ] ) { //new info in buffer
        break;
      }
    }
    if( i == 4 ) {
      return( 0 );  //all bytes are the same
    }
    /* print buffer */
    if( buf[ 0 ] & 0x01 ) {
      Serial.print("Button1 pressed ");
    }
    if( buf[ 0 ] & 0x02 ) {
      Serial.print("Button2 pressed ");
    }
    if( buf[ 0 ] & 0x04 ) {
      Serial.print("Button3 pressed ");
    }
    Serial.println("");
    Serial.print("X-axis: ");
    Serial.println( buf[ 1 ], DEC);
    Serial.print("Y-axis: ");
    Serial.println( buf[ 2 ], DEC);
    Serial.print("Wheel: ");
    Serial.println( buf[ 3 ], DEC);
    
    for( i = 0; i < 4; i++ ) {
      old_buf[ i ] = buf[ i ];  //copy buffer
    }
    Serial.println("");
    return( rcode );
}

 

运行结果

usb61

完整代码下载

mouse0

看起来按键和X Y都已经正确,但是 wheel 并不正常。再仔细研究代码,取出来的信息长度和描述符中的不一致。就是说,程序虽然能够运行也能够取到变化的值,但是解读有误。

再进一步研读 Descriptor
Length: 1 Type: Global Tag: Usage Page Generic Desktop Controls Data: 01
Length: 2 Type: Global Tag: Logical Minimum Data: 01 Data: F8 //最小 F801 = 1111 1000 0000 0001 = -2047
Length: 2 Type: Global Tag: Logical Maximum Data: FF Data: 07//最大 07FF = 0000 0111 1111 1111 = 2047
Length: 1 Type: Global Tag: Report Size Data: 0C //这里指出了上面数值的大小是 12位
Length: 1 Type: Global Tag: Report Count Data: 02
Length: 1 Type: Local Tag: Usage Data: 30 // X
Length: 1 Type: Local Tag: Usage Data: 31 // Y

应该是意味着2个12bits长度的数值,对应X Y 分配如下,其中 X[B] 和Y[B]应该是最高的符号位

usb62

根据这个改写程序,按照上面的表格取值再拼接起来,特别需要注意的是,我发现Arduino在不同尺寸的数据转换上似乎有一些bug,我只能把值放在 unsigned long int中然后才能进行拼接和输出的动作。

    Serial.print("X-axis: ");
    x=((libuf[2] & 0xF)<<8)+(libuf[1] & 0xFF );
    if (x & 0x800) {
      Serial.print("-");
      x = ((~x) & 0x7FF) +1;
    }
   
    Serial.println(x, HEX);
    
    Serial.print("Y-axis: ");    
    y=(((libuf[2]>>4) & 0xF) +((libuf[3] & 0xFF )<<4));
    if (y & 0x800) {
      Serial.print("-");
      y = ((~y) & 0x7FF) +1;
    }    
Serial.println(y, HEX);

 

最终,程序可以正常执行。

工作正常的程序如下:

#include "Max3421e.h"
#include "Usb.h"

 
#define DEVADDR 1
#define CONFVALUE 1
 
void setup();
void loop();
 
MAX3421E Max;
USB Usb;
 
void setup()
{
    Serial.begin( 115200 );
    Serial.println("Start");
    Max.powerOn();
    delay( 200 );
}
 
void loop()
{
 byte rcode;
    Max.Task();
    Usb.Task();
    if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING ) {
        mouse0_init();
    }//if( Usb.getUsbTaskState() == USB_STATE_CONFIGURING...
    if( Usb.getUsbTaskState() == USB_STATE_RUNNING ) {  //poll the keyboard
        rcode = mouse0_poll();
        if( rcode ) {
          Serial.print("Mouse Poll Error: ");
          Serial.println( rcode, HEX );
        }//if( rcode...
    }//if( Usb.getUsbTaskState() == USB_STATE_RUNNING...
}
/* Initialize mouse */
void mouse0_init( void )
{
 byte rcode = 0;  //return code
  /**/
  Usb.setDevTableEntry( 1, Usb.getDevTableEntry( 0,0 ) );              //copy device 0 endpoint information to device 1
  /* Configure device */
  rcode = Usb.setConf( DEVADDR, 0, CONFVALUE );
  if( rcode ) {
    Serial.print("Error configuring mouse. Return code : ");
    Serial.println( rcode, HEX );
    while(1);  //stop
  }//if( rcode...

  Usb.setUsbTaskState( USB_STATE_RUNNING );
  return;
}
/* Poll mouse using Get Report and print result */
byte mouse0_poll( void )
{
  byte rcode,i;
  char buf[ 5 ] = { 0 };      //mouse buffer
  static char old_buf[ sizeof(buf) ] = { 0 };  //last poll
  unsigned long int libuf[ sizeof(buf) ];
  unsigned long int x;
  unsigned long int y;
  
    /* poll mouse */
    rcode = Usb.getReport( DEVADDR, 0, sizeof(buf), 0, 1, 0, buf );
    if( rcode ) {  //error
      return( rcode );
    }
    for( i = 0; i < sizeof(buf); i++) {  //check for new information
      if( buf[ i ] != old_buf[ i ] ) { //new info in buffer
        break;
      }
    }
    if( i == sizeof(buf)) {
      return( 0 );  //all bytes are the same
    }
    /* print buffer */
    if( buf[ 0 ] & 0x01 ) {
      Serial.print("Button1 pressed ");
    }
    if( buf[ 0 ] & 0x02 ) {
      Serial.print("Button2 pressed ");
    }
    if( buf[ 0 ] & 0x04 ) {
      Serial.print("Button3 pressed ");
    }
    
    for( i = 0; i < sizeof(buf); i++ ) {
      old_buf[ i ] = buf[ i ];  //copy buffer
      libuf[ i] = buf[i];
    }

    //Serial.print(libuf[0],HEX); Serial.print("  "); 
    //Serial.print(libuf[1],HEX); Serial.print("  "); 
    //Serial.print(libuf[2],HEX); Serial.print("  "); 
    //Serial.print(libuf[3],HEX); Serial.print("  ");     
    //Serial.println("");
    
    Serial.print("X-axis: ");
    x=((libuf[2] & 0xF)<<8)+(libuf[1] & 0xFF );
    if (x & 0x800) {
      Serial.print("-");
      x = ((~x) & 0x7FF) +1;
    }
   
    Serial.println(x, HEX);
    
    Serial.print("Y-axis: ");    
    y=(((libuf[2]>>4) & 0xF) +((libuf[3] & 0xFF )<<4));
    if (y & 0x800) {
      Serial.print("-");
      y = ((~y) & 0x7FF) +1;
    }    
    Serial.println(y, HEX);

    Serial.print("Wheel: ");    
    Serial.println(buf [4] & 0xFF, HEX);    
    return( rcode );
}

 

完整代码下载:

mousea

补遗:在运行中,我还发现了一个奇怪的问题:当使用 Get_Report取得数据时,鼠标向一个方向移动,会出现最大值。意思是:比如,向右一直移动鼠标,输出达到 7FF 之后,继续右移,输出值会维持在 7FF 而不会变化。没有找到直接描述这个问题的资料,不过有一些类似的介绍【参考2】,上面提到USB鼠标在送出数据的时候,会有两种方式,一种是Relative ,一种是Absolute。差别在于,比如前者输出 (1,1),意思是告诉系统鼠标移动了(1,1);而后者如果输出 (1,1)则是告诉系统,鼠标移动到(1,1)。看起来,我这个鼠标描述符中提到的是Relative,但是实际输出是 Absolute。

Length: 1 Type: Global Tag: Report Size Data: 0C
Length: 1 Type: Global Tag: Report Count Data: 02
Length: 1 Type: Local Tag: Usage Data: 30
Length: 1 Type: Local Tag: Usage Data: 31
Length: 1 Type: Main Tag: Input Data,Variable,Relative………

于此可以形成对照的是 Wheel,每次滚动之后,很快会再次输出一个 0 的位置,下次再给出新的滚动值。
至于Windows 下,根据资料,系统会自动根据鼠标信息计算出一个大概范围方便使用(比如,屏幕是 1024×768,鼠标是Relative -100到+100的话,如果不做优化,从左上到右下需要做几次才行)。而我用的这个鼠标,声明自己是Relative,但是实际上发出Absolute,只是因为自己的范围很大(-7FF到+7FF),所以也不会有什么感觉。

上述只是猜测,是目前已知的最合理的解释而已。使用逻辑分析仪分析USB鼠标信息得到的结果相同。

逻辑分析仪抓取的结果,Windows使用 Interrupt 方式来和鼠标通讯

usb64

下面展示一下USB逻辑分析仪抓到的启动时的一些信息,首先是 Overview

image016

image005

image006
不清楚为什么VendorID 居然是罗技的,一种可能是因为这个是假的HP鼠标,乱写一个ID;另外的可能是HP 找罗技代工的。

image007

image008

可以看到,MaxPower确实是一个很古怪的数值:98ma

image009

image010

image011

image012

接下来是最重要的HID 描述符
image013

image014

image015

参考:
1.https://www.circuitsathome.com/communicating-arduino-with-hid-devices-part-1
2.http://www.microchip.com/forums/m482197.aspx MOUSE HID / Resolution problem